
Asteroid
Release 2.0.1

Lutz Hamel, Tim Colaneri, Oliver McLaughlin, Ariel Finkel, Theodore Henson, Calvin Higgins, Christian Tropeano

Sep 16, 2023





CONTENTS

1 Contents 3

i



ii



Asteroid, Release 2.0.1

Asteroid is an open source, dynamically typed, multi-paradigm programming language heavily influenced by Python,
Rust, ML, and Prolog currently under development at the University of Rhode Island. Asteroid implements a new pro-
gramming paradigm called pattern-matching oriented programming. In this new programming paradigm patterns and
pattern matching are supported by all major programming language constructs making programs succinct and robust.
Furthermore, patterns themselves are first-class citizens and as such can be passed to and returned from functions as
well as manipulated computationally.

CONTENTS 1



Asteroid, Release 2.0.1

2 CONTENTS



CHAPTER

ONE

CONTENTS

1.1 Installation

Asteroid is available from the PyPI project website pypi.org/project/asteroid-lang and is installed using:

$ pip install asteroid-lang

This should work on Unix-like and Windows systems, though you may have to use pip3 or some other variation.

Don’t forget to add the bin directory where pip installs programs to your PATH variable.

In addition to installing Asteroid directly on your machine, there is also a cloud-based Linux virtual machine that is
completely set up with an Asteroid environment and can be accessed at Repl.it.

1.2 Running the Asteroid Interpreter

You can now run the interpreter from the command line by simply typing asteroid. This will work on both Windows
and Unix-like systems as long as you followed the instructions above. To run asteroid on Unix-like systems and on our
virtual machine,

$ cat hello.ast
-- the obligatory hello world program

load system io.

io @println "Hello, World!".

$ asteroid hello.ast
Hello, World!
$

On Windows 10 the same thing looks like this,

C:\> type hello.ast
-- the obligatory hello world program

load system io.

io @println "Hello, World!".

(continues on next page)

3

https://pypi.org/project/asteroid-lang
https://repl.it/@lutzhamel/asteroid#README.md


Asteroid, Release 2.0.1

(continued from previous page)

C:\> asteroid hello.ast
Hello, World!
C:\>

As you can see, once you have Asteroid installed on your system you can execute an Asteroid program by typing:

asteroid [flags] <program file>

at the command prompt. Asteroid also supports an interactive mode:

$ asteroid
Asteroid Version x.y.z
Type "asteroid -h" for help
Press CTRL-D to exit
ast> load system io.
ast> io @println "Hello, World!".
Hello, World!
ast>

1.3 Welcome To Asteroid!

Thank you for visiting our page about Asteroid! If you have gone to the Asteroid Documentation then you have seen
that Asteroid is a pattern-matching oriented language. If you have not heard of that programming paradigm (type of
programming language) before, Asteroid is one of the first of its kind. Here we provide a brief introduction to Asteroid
geared towards C++ programmers.

1.3.1 Pattern Matching at the Core of Things

Pattern-matching is the idea of extracting values from a structure by applying a pattern to that structure. If the pattern
contains variables then these variables will be instantiated with values from the structure during a successful match.
Consider the structure (1,2). If we apply the pattern (1,x) to that structure then the 1will be matched and the variable
x will be instantiated with the value 2. The interesting part about pattern matching is that they can also fail to match.
Consider again our structure (1,2) but now we want to apply the pattern (y,1). This pattern match will fail because
the second component of our structure and the pattern do not match. Because of this mismatch the variable y will also
not be instantiated. Perhaps the simplest pattern match is between a value and a variable as a pattern. In that case the
variable is simply instantiated with the value.

A very interesting aspect of pattern matching is that it provides a powerful way to inspect the values passed to a function.
Consider the C++ function f defined here,

void f(int x) {
if (x == 0)
std::cout << "zero\n";

else
std::cout << "not zero\n";

}

If the integer value passed to the function is equal to zero then it prints out the word zero, otherwise it prints out the
words not zero. Here the programmer has to use conditionals in order to decide which output to produce. Using
conditionals is not a bad practice, however, functions that use pattern tend to look less cluttered.

4 Chapter 1. Contents

https://asteroid-lang.readthedocs.io/en/latest/


Asteroid, Release 2.0.1

Here is the same function written in Asteroid using pattern matching,

load system io.

function f
with 0 do

io @println("zero").
with x do

io @println("not zero").
end

Here the value 0 and the variable x appearing right after the with keywords are patterns that are applied to the function
value. If the function is called with the value 0 then the value will be matched by the first pattern and the associated
print statement is executed. If the value with which the function was called is anything but 0 then the second pattern
will match and that associated print statement will be executed. A variable can be considered a pattern that will match
any value (unless other conditions have been placed on that variable).

The interesting part about patterns is that they can include all kinds of additional information like, for example, that the
value a pattern is to match is a positive integer. Consider the following example of the recursive factorial implementa-
tion. Let’s look at that function in C++,

int fact(int x) {
if (x == 0)

return 1;
else if (x > 0)

return x * fact(x-1);
else
throw "undefined for negative values";

}

Factorials are only defined over positive integers. So notice that in this case we have to declare the argument as an integer
argument and then later in the function we need to make sure that the integer value being passed in is in the correct
range of values in order for the computation to be successful. With pattern matching in Asteroid we can accomplish
all this right in the patterns that we apply to the input argument,

-- define patterns matching positive or negative integer values
let POS_INT = pattern %[(k:%integer) if k > 0]%.
let NEG_INT = pattern %[(k:%integer) if k < 0]%.

-- define our factorial function
function fact

with 0 do
return 1

with x:*POS_INT do -- use first pattern
return x * fact(x-1).

with x:*NEG_INT do -- use second pattern
throw Error("undefined for "+x).

end

The first two lines of the program create the patterns that define what it means to be a positive or negative integer. For
example, the first pattern will only match a value that is an integer whose value is larger than zero. Later in the program,
these patterns get dereferenced (which means retrieved from where they are stored in memory) using the * operator.
Notice that we have a similar setup here as with the f function we looked at earlier. If the 0 pattern matches then we
will just return the value 1. The line after that is saying “with the argument x and the pattern POS_INT (or in other
words, if the argument is positive), recursively find the factorial of the number” and the last wth line is saying “with the

1.3. Welcome To Asteroid! 5



Asteroid, Release 2.0.1

argument x and the pattern NEG_INT (if the argument is negative), throw an error”. Notice that patterns allow us to
precisely define what we mean by positive or negative integers in one place and then use these patterns in our function.

Pattern matching can be applied in a lot of places in Asteroid. But one other place is perhaps more prevalent than any
other, which is pattern matching in Asteroid’s let statement. The let statement is Asteroid’s version of the assignment
statement with a twist though: the left side of the = sign is not just a variable but is considered a pattern. For simple
assignments there is no discernible difference between assignments in Asteroid and assignments in other languages,

let x = val.

Here, the variable x will match the value stored in val. However, because the left side of the = sign is a pattern we can
write something like this,

let x:%[(k:%integer) if mod(k,2)==0]% = val.

where x will only match the value of val if that value is an even integer value. The fact that the left side of the = is a
pattern allows us to write things like this,

let 1 = 1.

which simply states that the value 1 on the right can be matched by the pattern 1 on the left. Having the ability to
pattern match on literals is convenient for statements like these,

let (1,x) = p.

This let statement is only successful for values of p which are pairs where the first component of the pair is the value
1. The thing to remember is that the let statement is not entirely equivalent to the assignment operator in other
languages, even though it may look like that.

1.3.2 Object-Oriented Programming in Asteroid

The term object-oriented in programming means that code is broken up into classes and objects. Think of classes as
user defined data types. While this may sound intimidating, there are many uses of object-oriented programming that
can be used to help write efficient, clean code. For instance, there may be a time where you have to write code for
software that pertains to families. While you could use tuples or arrays to represent this data, objects and classes are
an even better way to achieve this feat. Take a look at this code in C++ that has the class for a family:

class Family {
public:

std::string parent;
std::string child1;
std::string child2;

// constructor
Family(std::string p, std::string c1, std::string c2) {

this->parent = p;
this->child1 = c1;
this->child2 = c2;

}
};

Now if you want to create an instance or object of the Family class, you could write this line to do so:

Family *myfamily = new Family("Jim", "Bob", "Ann");

6 Chapter 1. Contents



Asteroid, Release 2.0.1

where the properties parent is “Jim”, child1 is “Bob” and child2 is “Ann”. Now if you wanted to access one of these
properties, you could do,

std::cout << myfamily->child1; // while this looks intimidating, all this is doing is␣
→˓dereferencing child1

Classes and objects are an easier way to store data that may not fit with any data structure that a language currently has.
Asteroid implements object-orientation via structures, an approach it shares with the programming language Rust. In
Asteroid the above example would be written as,

structure Family with
data parent.
data child1.
data child2.

-- constructor
function __init__ with (p:%string, c1:%string, c2:%string) do

let this @parent = p.
let this @child1 = c1.
let this @child2 = c2.

end
end

And you can create an object from that structure by doing,

let myfamily = Family("Jim", "Bob", "Ann").

Notice how similar the construction of objects are in both languages. Think of structures in Asteroid as classes in
C++, and in both languages these allow you to instantiate objects (that means if you have programmed with classes
and objects in C++, creating structures in Asteroid should be trivial). Something else to note is that similar to Rust and
Go, Asteroid does not have inheritance for classes. That is why programming in Asteroid is sometimes referred to
as object-based programming rather than object-oriented programming.

We can access substructures of objects with the access operator @,

io @println (myfamily @child1).

which will print out the name of the first child.

The name of the class above can now be considered a user defined data type and can appear wherever built-in data type
names can appear. For instance it can appear in a pattern restricting the values a particular variable can take on,

let f:%Family = myfamily.

Since we are talking about the let statement in conjunction with objects, Asteroid allows pattern matching on objects!
This allows for easy access to substructures of objects,

let Family(parent,first,second) = myfamily.

assert(parent is "Jim").
assert(first is "Bob").
assert(second is "Ann").

Here we are matching the object stored in myfamily again the pattern Family(parent,first,second) and the
variables will be instantiated with appropriate values from the data members of the object.

1.3. Welcome To Asteroid! 7



Asteroid, Release 2.0.1

Now that you understand the two different paradigms that Asteroid is made out of, you can start writing your programs
in it and explore the versatility of patterns, pattern-matching and object-oriented programming.

1.3.3 How to Get Started in Asteroid

Now that you know what principles Asteroid is made of, you can now get started writing programs in it. Directions to
install Asteroid can be found here. After you installed Asteroid correctly, you can write your first program. The first
one you can write is a simple hello world program, which looks something like:

load system io. -- header that allows the programmer to print things out to the screen␣
→˓and to accept input

io @println "Hello, World!".

After you have written your first program, you can run the program by typing in the following line in your terminal:

asteroid <name of program>

where the name of the program is the name of the file that you want to run.

Make sure that you are in the same folder in your terminal of the file that you are trying to run!

Notice how the @ symbol is used in two different places (this is common in programming languages, where one operator
can be used multiple ways). In Asteroid, modules (which was the load system io. line at the top of our files) are
actually objects, so to access a method in a module, you use the @ symbol. So in this example, the module is the io
module and we want to use the println method in that module, which is why you see the @ symbol in there. A module
is a group of code that has already been written (typically by the developers of the language) which can be used
again in other people’s programs.

Here is the complete list of modules in Asteroid.

Some important things to note in Asteroid:

• Most statements must end with a period (this is equivalent to using a semicolon in C++)

• In order to print things, you must include the load system io. in your program before you attempt any output.

• lines that start with -- are comment lines

• If you see a line that looks like (x:%integer), that is used to match any value of a given type. (The %integer
pattern matches any integer value and can be used with any other type in Asteroid.)

If you would like more information about Asteroid, please see the Asteroid reference guide and user guide.

1.4 Asteroid User Guide

1.4.1 Introduction

Asteroid is a modern, application-oriented, multi-paradigm programming language supporting first-class patterns. The
language is heavily influenced by Python, Rust, ML, and Prolog. Furthermore, Asteroid is dynamically typed and
makes pattern matching one of its core computational mechanisms. When we talk about pattern matching we mean
both structural pattern matching as well as regular expression matching.

In this document we describe the major features of Asteroid and give plenty of examples. If you have used a program-
ming language like Python or JavaScript before, then Asteroid should appear very familiar. However, there are some
features which differ drastically from other programming languages due to the core pattern-matching programming
paradigm with first-class patterns. Here are just two examples:

8 Chapter 1. Contents

https://asteroid-lang.readthedocs.io/en/latest/Installing%20and%20Running.html
https://asteroid-lang.readthedocs.io/en/latest/Reference%20Guide.html#asteroid-modules
https://asteroid-lang.readthedocs.io/en/latest/Reference%20Guide.html
https://asteroid-lang.readthedocs.io/en/latest/Asteroid%20User%20Guide.html
https://www.python.org
https://www.rust-lang.org
https://www.smlnj.org
http://www.swi-prolog.org


Asteroid, Release 2.0.1

Example: All statements that look like assignments are actually pattern-match statements. For example if we state,

let [x,2,y] = [1,2,3].

that means the list [1,2,3] is matched to the pattern [x,2,y] and x and y are bound to the values 1 and 3, respectively.
By the way, there is nothing wrong with the following statement,

let [1,2,3] = [1,2,3].

which is just another pattern match without any variable instantiations.

Example: Patterns in Asteroid are first-class citizens of the language. This is best demonstrated with a program. Here
is a program that recursively computes the factorial of a positive integer and uses first-class patterns in order to ensure
that the domain of the function is not violated,

-- define first-class patterns
let pos_int = pattern (x:%integer) if x > 0.
let neg_int = pattern (x:%integer) if x < 0.

-- define our factorial function
function fact

with 0 do
return 1

with n:*pos_int do -- use first pattern
return n * fact (n-1).

with n:*neg_int do -- use second pattern
throw Error("undefined for "+n).

end

As you can see, the program first creates patterns and stores them in the variables pos_int and neg_int and it uses
those patterns later in the code by dereferencing those variables with the * operator. First-class patterns have profound
implications for software development in that pattern definition and usage points are now separate and patterns can be
reused in different contexts.

These are just two examples where Asteroid differs drastically from other programming languages. This document is
an overview of Asteroid and is intended to get you started quickly with programming in Asteroid.

1.4.2 The Basics

As with most programming languages we are familiar with, Asteroid has variables (alpha-numeric symbols starting
with an alpha character) and constants. Constants are available for all four primitive data types,

• integer, e.g. 1024

• real, e.g. 1.75

• string, e.g. "Hello, World!"

• boolean, e.g. true

Asteroid also supports the built-in data types:

• list

• tuple

These are structured data types in that they can contain entities that belong to other data types. Both of these data types
have constructors which are sequences of comma separated values enclosed by square brackets for lists, e.g. [1,2,3],
and enclosed by parentheses for tuples, e.g. (x,y). Lists are mutable structures in that we can add or delete elements.

1.4. Asteroid User Guide 9



Asteroid, Release 2.0.1

On the other hand, tuples are immutable objects; once created you cannot change them. Furthermore, for tuples we
have the caveat that the 1-tuple is represented by a value followed by a comma to distinguish it from parenthesized
expressions, e.g. (3,) the 1-tuple versus (3) the parenthesized expression. Here are some examples,

let l = [1,2,3]. -- this is a list
let t = (1,2,3). -- this is a tuple

As we said above, in order to distinguish it from a parenthesized value the single element in a 1-tuple has to be followed
by a comma, like so,

let one_tuple = (1,). -- this is a 1-tuple

We can cast lists and tuples to strings for easy printing,

load system io.
io @println ("this is my list: " + tostring [1,2,3]).

Here the + operator acts like a string concantenation operator with the list [1,2,3] promoted to a string.

Asteroid supports the none type. The none type has only one member: A constant named none. However, it turns
out that the null-tuple, a tuple with no components indicated by (), also belongs to this type rather than the tuple type
discussed earlier. But the none data type only has one constant, this implies that () and none mean the same thing
and can be used interchangeably. That is, the following let statements will succeed,

let none = ().
let () = none.

showing that () and none are equivalent and pattern-match each other.

We should mention here that because functions and patterns are both first-class citizens in Asteroid we also have the
types function and pattern,

-- define a function
function inc with x do

return x+1.
end

-- show that 'inc' is of type 'function'
assert (gettype(inc) == "function").

Here is a small program demonstrating the pattern data type,

-- define a first-class pattern
let p = pattern (x:%integer) if x>0.

-- check the type of the value stored in p
assert (gettype(p) == "pattern").

Data types in Asteroid do not form type hierarchies as in C/C++ and Java, for example. Therefore, in mixed type
arithmetic statements we have to explicitly convert data types as in,

let x = 1.1 + toreal(1).

Asteroid shares this view of data types with prgogramming languages like SML and Rust.

By now you probably figured out that statements are terminated with a period and that comments start with a --
symbol and continue till the end of the line. You probably also figured out that the let statement is Asteroid’s version

10 Chapter 1. Contents



Asteroid, Release 2.0.1

of assignment even though the underlying mechanism is a bit different as we will see when we discuss pattern matching
in more detail.

1.4.3 Data Structures

Lists

In Asteroid the list is a fundamental, built-in data structure. A trait it shares with programming languages such as
Lisp, Python, ML, and Prolog. Below is a list reversal example program. Notice that lists are zero-indexed and elements
of a list are accessed via the @ operator,

let a = [1,2,3]. -- construct list a
let b = [a@2, a@1, a@0]. -- reverse list a
assert (b == [3,2,1]).

We can achieve the same effect by giving a list of index values (a slice) to the @ operator,

let a = [1,2,3]. -- construct list a
let b = a@[2,1,0]. -- reverse list a using slice [2,1,0]
assert (b == [3,2,1]).

In Asteroid lists are considered objects with member functions that can manipulate list objects. We could rewrite the
above example as,

load system io.

let a = [1,2,3].
let b = a @reverse (). -- reverse list using member function 'reverse'
io @println b.

The @ operator is Asteroid’s general access operator. It allows you to access either individual elements, slices, or
member functions of a list. It also allows for access to members and functions of tuples and objects. Notice that in
order to access the println function of the io module we also use the @ operator. This is because in Asteroid, system
modules are objects, so you must use @ to access the functions of the module.

For a comprehensive treatment of available member functions for lists and tuples please see the reference guide. We
look at objects later on in this guide.

Besides using the constructor for lists which consists of the square brackets enclosing comma separated elements we
can use list comprehensions to construct lists. In Asteroid a list comprehension consist of a range specifier together
with an optional step specifier allowing you to generate integer values within that range,

load system io.

-- build a list of odd values
let a = [1 to 10 step 2]. -- list comprehension
io @println ("list: " + tostring a).

-- reverse the list using a slice computed as comprehension
let slice = [4 to 0 step -1]. -- list comprehension
let b = a@slice.
io @println ("reversed list: " + tostring b).

The output is,

1.4. Asteroid User Guide 11



Asteroid, Release 2.0.1

list: [1,3,5,7,9]
reversed list: [9,7,5,3,1]

Asteroid’s simple list comprehensions in conjunction with the map function for lists allows you to construct virtually
any kind of list. For example, the following program constructs a list of alternating 1 and -1,

load system io.
load system math.

let a = [1 to 10] @map (lambda with x do math @mod (x,2))
@map (lambda with x do 1 if x==1 else -1).

io @println a.

where the output is,

[1,-1,1,-1,1,-1,1,-1,1,-1]

Tuples

The tuple is another fundamental, built-in data structure that can be found in Asteroid. Below is an example of a tuple
declaration and access.

let a = (1,2,3). -- construct tuple a
let b = a@1. -- access the second element in tuple a, tuples are 0-indexed
assert (b == 2). -- assert that the value of the second element is correct

Lists and tuples may be nested,

-- build a list of tuples
let b = [("a","b","c"),

("d","e","f"),
("g","h","i")].

-- Access an element in the nested structure.
assert (b@0@1 == "b").

Unlike lists, tuples are immutable. This means that their contents cannot be changed once they have been declared.
The following program demonstrates this,

load system io.

let b = ("a","b","c"). -- build a tuple

try
let b@1 = "z". -- attempt to modify an element in the tuple

catch Exception (kind,message) do
io @println (kind+": "+message).

end.

Which will print out the following message:

SystemError: term '(a,b,c)' is not a mutable structure

12 Chapter 1. Contents



Asteroid, Release 2.0.1

Should we want to change the contents of an already declared tuple, we would need to abandon the original and create
a new one with the updated contents. When to use tuples and when to use lists is really application dependent. Tuples
tend to be preferred over lists when representing some sort of structure, like abstract syntax trees, where that structure
is immutable meaning, for example, that the arity of a tree node cannot change.

Structures and Objects

You can introduce custom data structures using the structure keyword. For example, the following statement intro-
duces a structure of type A with data members a and b,

structure A with
data a.
data b.

end

Structures differ from lists and tuples in the sense that the name of the structure acts like a type tag. So, when you
define a new structure you are in fact introducing a new type into your program.

For each structure Asteroid creates a default constructor that instantiates an object from that structure. The default
constructor copies the arguments given to it into the data member fields in the order that the arguments and data
members appear in the program text. Also, the data fields of an object are accessed via their names rather than index
values. Here is a simple example that illustrates all this,

-- define a structure of type A
structure A with

data a.
data b.

end

let obj = A(1,2). -- default constructor, a<-1, b<-2
assert (obj@a == 1). -- access first data member
assert (obj@b == 2). -- access second data member

The following is a more involved example,

load system io.

structure Person with
data name.
data age.
data gender.

end

-- make a list of persons
let people = [

-- use default constructors to construct Person objects
Person("George", 32, "man"),
Person("Sophie", 46, "woman"),
Person("Oliver", 21, "man")

].

-- retrieve the second person on the list and use pattern
-- matching on Person objects to extract member values
let Person(name,age,gender) = people@1.

(continues on next page)

1.4. Asteroid User Guide 13



Asteroid, Release 2.0.1

(continued from previous page)

-- print out the member values
io @println (name + " is " + tostring age + " years old and is a " + gender + ".").

The output is,

Sophie is 46 years old and is a woman.

The structure statement introduces a data structure of type Person with the three data members name, age, and
gender. We use this data structure to build a list of persons. One of the interesting things is that we can pattern match
the generated data structure as in the second let statement in the program to extract information from a Person object.

In addition to the default constructor, structures in Asteroid also support user specified constructors and member func-
tions. We’ll talk about those later when we talk about OO programming in Asteroid.

1.4.4 The Let Statement

The let statement is a pattern matching statement of the form,

let <pattern> = <value>.

where the pattern on the left side of the equal sign is matched against the value of the right side of the equal sign. When
the pattern consist of just a single variable then the let statement can be viewed as Asteroid’s version of the assignment
statement, e.g.,

let x = 1.

However, statements like,

let 1 = 1.

where we pattern match the pattern 1 on the left side to the value 1 on the right side are completely legal and highlight
the fact that the let statement is not equivalent to an assignment statement.

Simple patterns are expressions that consist purely of constructors and variables. Constructors themselves consist of
constants, list and tuple constructors, as well as user defined structures. The advantage of pattern matching is that it
provides direct access to substructures of a particular value. This is often called “destructuring” of a value. Consider
that we want to access the constituent values of the pair (1,2). In a non-pattern-matching approach we would have to
access each of these constituent values one-by-one,

let p = (1,2).
let x = p@0.
let y = p@1.
assert (x==1 and y==2).

But in a pattern-matching approach we can write a let statement with a pattern that looks like a pair with the variables
x and y where we expect our values to be,

let p = (1,2).
let (x,y) = p.
assert (x==1 and y==2).

14 Chapter 1. Contents



Asteroid, Release 2.0.1

Matching the pattern against the value (1,2) stored in p first matches the pair structure against the pair value and
then matches the variables to the appropriate substructures. Once the variables have been matched to value the let
statement declares the variables in the current scope and they become available for computation.

The following is an example involving structures and objects,

structure Person with
data name.
data age.
data profession.

end

let joe = Person("Joe", 32, "Cook"). -- construct an object
let Person(n,a,p) = joe. -- pattern match object

assert (n=="Joe" and a==32 and p=="Cook").

We first construct an object joe with the first let statement and then use pattern matching to desctructure it with the
second let statement binding its substructures to the variables n, a, and p.

Asteroid supports special patterns called type patterns that match any value of a given type. For instance, the %integer
pattern matches any integer value. Here is a simple example,

let %integer = 1.

This let statement succeeds because 1 is an integer value that can be pattern-matched against the type pattern
%integer. Type pattern exist for all builtin data types, %real and %list. If you introduce a user defined type via a
structure, then Asteroid will create a type pattern for all objects of that data type. Here is a simple example,

structure Foo with
data a.
data b.

end

let %Foo = Foo(1,2).

Notice the type pattern for the user defined type Foo in the let statement.

Asteroid also supports conditional patterns. Here is an example where we to make sure that the variable t on the left
matches a pair of integer values,

let t if t is (%integer,%integer) = (1,2).

Of course, this let statement is going to be successful because the value on the right is indeed a pair of integers. This
kind of conditional pattern appears so often in Asteroid code that Asteroid has a shorthand notation for this,

let t:(%integer,%integer) = (1,2).

Again, here the let statement is only successful if t matches a pair of integers.

Shorthand conditional patterns often look like a variable declarations in other languages. In Asteroid, though, it is still
just all about pattern matching. Consider,

load system io.
load system math.

(continues on next page)

1.4. Asteroid User Guide 15



Asteroid, Release 2.0.1

(continued from previous page)

let x:%real = math @pi.
io @println x.

The left side of the let statement is a conditional pattern that matches any real value, and if that match is successful
then the value is bound to the variable x. The program will print the value 3.141592653589793.

Beware of the fact that even though the let statement above looks like a declaration of a real variable it is not; it is
a pattern match statement enforcing that the value assigned to x matches the pattern %real. Since this is a pattern
match statement, this also means that standard type promotions such as promoting integers to reals during assignments
in other programming languages do not apply here. For example, in Asteroid the following let statement fails,

let x:%real = 1.

because 1 is an integer value and does not match the pattern %real.

1.4.5 Flow of Control

Control structure implementation in Asteroid is along the lines of any of the modern programming languages such as
Python, Swift, or Rust. For example, the for loop allows you to iterate over lists without having to explicitly define
a loop index counter. In addition, the if statement defines what does or does not happen when certain conditions are
met in a very familiar way. For a list of all control statements in Asteroid, please take a look at the reference guide.

As we said, in terms of flow of control statements there are really not a lot of surprises. This is because Asteroid supports
loops and conditionals in a very similar way to many of the other modern programming languages. For example, here
is a short program with a for loop that prints out the first six even positive integers,

load system io.

for i in 0 to 10 step 2 do
io @println i.

end

The output is,

0
2
4
6
8
10

Here is another example that iterates over lists,

load system io.
load system util

let indexes = ["first","second","third"].
let birds = ["turkey","duck","chicken"].

for (ix,bird) in util @zip (indexes,birds) do
io @println ("the "+ix+" bird is a "+bird).

end

The output is,

16 Chapter 1. Contents



Asteroid, Release 2.0.1

the first bird is a turkey
the second bird is a duck
the third bird is a chicken

In the loop we first create a list of pairs using the zip function, over which we then iterate while pattern matching on
each of the pairs on the list with the pattern (ix,bird).

The following is a short program that demonstrates an if statement,

load system io.

let x = tointeger (io @input "Please enter an integer: ").

if x < 0 do
let x = 0.
io @println "Negative, changed to zero".

elif x == 0 do
io @println "Zero".

elif x == 1 do
io @println "One".

else do
io @println "Something else".

end

Even though Asteroid’s flow of control statements look so familiar, they support pattern matching to a degree not found
in other programming languages and which we will take a look at below.

1.4.6 Functions

Functions in Asteroid resemble function definitions in functional programming languages such as Haskell and ML.
Here functions definitions have a single formal argument and function calls are expressed via juxtaposition of the
function name and the single actual argument. Here is a simple example,

function double with i do -- pattern match the actual arg with i
return 2*i.

end

let d = double 2. -- function call via juxtaposition, no parentheses necessary
assert (d == 4).

In the with expression we pattern match the actual argument that is being passed in against the variable i. Also note
that the function call is expressed via juxtaposition, no parentheses necessary.

If we wanted to pass more than a single value to a function we have to create a tuple and then pass that tuple to the
function like in this example,

function reduce with (a,b) do -- pattern match the actual argument
return a*b.

end

let r = reduce (2,4). -- function call via juxtaposition
assert (r == 8).

1.4. Asteroid User Guide 17



Asteroid, Release 2.0.1

Even though the function call looks like a traditional function call like in Python it is not. The underlying mechanism
is quite different: on the call site we construct a tuple that holds all our values which is then passed to the function as
the only parameter. Within the function that tuple is pattern matched and whatever variables are instantiated during
this pattern match can be used within the function body.

In Asteroid functions are multi-dispatch, that is, a single function can have multiple bodies each attached to a different
pattern matching the actual argument. The following is the quick sort implemented in Asteroid where each with clause
introduces a new pattern with its corresponding function body,

load system io.

function qsort
with [] do -- empty list pattern

return [].
with [a] do -- single element list pattern

return [a].
with [pivot|rest] do -- separating the list into pivot and rest of list

let less=[].
let more=[].

for e in rest do
if e < pivot do

less @append e.
else

more @append e.
end

end

return qsort less + [pivot] + qsort more.
end

-- print the sorted list
io @println (qsort [3,2,1,0])

The output is as expected,

[0,1,2,3]

Notice that we use the multi-dispatch mechanism to deal with the base cases in the first two with clauses. In the
third with clause we use the pattern [pivot|rest] to match the input list. Here the variable pivot matches the first
element of the list, and the variable rest matches the remaining list. This remaining list is the original list with its
first element removed. The function body then implements the pretty much standard definition of the quick sort. Just
keep in mind that function calls are expressed via juxtaposition of function name and actual argument; no parentheses
necessary.

As you have seen in a couple of occasions already in the document, Asteroid also supports anonymous or lambda
functions. Lambda functions behave just like regular functions except that you declare them on-the-fly and they are
declared without a name. Here is an example using a lambda function,

load system io.

io @println ((lambda with n do n+1) 1).

The output is 2. Here, the lambda function is a function that takes a value and increments it by one. We then apply the
value 1 to the function and the print function prints out the value 2.

18 Chapter 1. Contents



Asteroid, Release 2.0.1

1.4.7 Pattern Matching

Pattern matching lies at the heart of Asteroid. We saw some of Asteroid’s pattern matching ability when we discussed
the let statement. Here is a more general discussion of pattern matching.

Pattern Matching in Expressions: The Is Predicate

We can also have pattern matching in expressions using the is predicate. The left operand of the is predicate is a term
and the right operand is a pattern. If the pattern match succeeds the predicate will return true otherwise it will return
false. Consider the following example,

load system io.

let p = (1,2).

if p is (x,y,z) do
io @println ("it's a triple with: "+ tostring x +","+ tostring y +","+ tostring z)

elif p is (x,y) do
io @println ("it's a pair with: "+ tostring x +","+ tostring y).

else do
io @println "it's something else".

end

Here we use patterns to determine if p is a triple, a pair, or something else. Pattern matching is embedded in the
expressions of the if statement using the is predicate. The output of this program is,

it's a pair with: 1,2

Pattern matching with the is predicate can happen anywhere expressions can be used. That means we can use the
predicate also on the right side of let statements,

let true = (1,2) is (1,2).

This is kind of strange looking but it succeeds. Obviously this pattern match will succeed because the term and the
pattern look identical. The return value of the is predicate is then pattern matched against the true pattern on the left
of the = symbol.

We can also employ pattern matching in loops. In the following program we use the is predicate to test whether a list
is empty or not while looping,

load system io.

let list = [1,2,3].

repeat do
let [head|tail] = list. -- pattern match with head/tail operator
io @println head.
let list = tail.

until list is []. -- pattern match with is predicate

The output is,

1.4. Asteroid User Guide 19



Asteroid, Release 2.0.1

1
2
3

The example employs pattern matching using the head-tail operator in order to iterate over the list elements and print
them. The termination condition of the loop is computed with the is predicate.

Pattern Matching in Function Arguments

As we have seen earlier, Asteroid supports pattern matching on function arguments in the style of ML and many other
functional programming languages. Here is an example that uses pattern matching on function arguments using binary
tree data structures,

structure Node with -- internal tree node with a value
data value.
data left_child.
data right_child.

end

structure Leaf with -- leaf node with a value
data value.

end

-- traverse a tree and collect all the values in the tree in a list
function traverse

with Leaf(v) do
return [v].

with Node(v,l,r) do
return [v] + traverse l + traverse r.

end

let tree = Node(1,Leaf(2),Leaf(3)).
assert (traverse(tree) == [1,2,3]).

The structures Node and Leaf allow us to construct binary trees with embedded values. The traverse function
traverses such trees and collects the values embedded in a tree on a list and returns that list. Notice the pattern matching
on the tree node constructs in the with clauses of the traverse funtion.

Conditional Pattern Matching

Asteroid allows the user to attach conditions to patterns that need to hold in order for the pattern match to succeed. This
is particularly useful for restricting input values to function bodies. Consider the following definition of the factorial
function where we use conditional pattern matching to control the kind of values that are being passed to a particular
function body,

load system io.

function factorial
with 0 do

return 1
with n if (n is %integer) and (n > 0) do

return n * factorial (n-1).
(continues on next page)

20 Chapter 1. Contents



Asteroid, Release 2.0.1

(continued from previous page)

with n if (n is %integer) and (n < 0) do
throw Error("factorial is not defined for "+n).

end

io @println ("The factorial of 3 is: " + tostring (factorial 3)).

Here we see that first, we make sure that we are being passed integers and second, that the integers are positive using
the appropriate conditions on the input values. If we are being passed a negative integer, then we throw an error.

The above factorial program can be simplified by rewriting the first condition on n in the conditional patterns as a
named pattern. We can also take advantage of the fact that the last expression evaluated in a function body provides an
implicit return value. This gives us,

load system io.

function factorial
with 0 do

1
with (n:%integer) if n > 0 do

n * factorial (n-1).
with (n:%integer) if n < 0 do

throw Error("factorial is not defined for "+n).
end

io @println ("The factorial of 3 is: " + tostring (factorial 3)).

The parentheses as they appear in the conditional pattern expressions are necessary.

Pattern Matching in For Loops

We have seen pattern matching in for loops earlier. Here we show another example. This combines structural matching
with regular expression matching in for loops that selects certain items from a list. Suppose we want to print out the
names of persons that contain a lower case ‘p’,

load system io.

structure Person with
data name.
data age.

end

-- define a list of persons
let people = [

Person("George", 32),
Person("Sophie", 46),
Person("Oliver", 21)

].

-- print names that contain 'p'
for Person(name if name is ".*p.*",age) in people do

io @println name.
end

1.4. Asteroid User Guide 21



Asteroid, Release 2.0.1

Here we pattern match the Person object in the for loop and then use a regular expression to see if the name of that
person matches our requirement that it contains a lower case ‘p’. The output is Sophie.

Pattern Matching in Try-Catch Statements

Exception handling in Asteroid is very similar to exception handling in many of the other modern programming lan-
guages available today. The example below shows an Asteroid program that throws one of two exceptions depending
on the randomly generated value i,

load system io.
load system random.

structure Head with
data val.

end

structure Tail with
data val.

end

try
let i = random @random ().
if i >= 0.5 do

throw Head i.
else do

throw Tail i.
end

catch Head v do
io @println ("you win with "+tostring (v,stringformat (4,2))).

catch Tail v do
io @println ("you loose with "+tostring (v,stringformat (4,2))).

end

The Head and Tail exceptions are handled by their corresponding catch statements, respectively. In both cases the
exception object is unpacked using pattern matching and the unpacked value is used in the appropriate message printed
to the screen.

It is worth noting that even though Asteroid has builtin exception objects such as Error, you can construct any kind of
object and throw it as part of an exception.

1.4.8 Structures, Object-Oriented Programming, and Pattern Matching

We saw structures such as,

structure Person with
data name.
data age.

end

earlier. It is Asteroid’s way to create custom data structures. These structures introduce a new type name into a
program. For instance, in the case above, the structure statement introduces the type name Person. Given a structure
definition, we can create objects from that structure. For example,

22 Chapter 1. Contents



Asteroid, Release 2.0.1

let scarlett = Person("Scarlett",28).

The right side of the let statement invokes the default constructor for the structure in order to create an object stored
in the variable scarlett. We can access members of the object,

load system io.

structure Person with
data name.
data age.

end

let scarlett = Person("Scarlett",28).
-- access the name field of the structure instance
io @println (scarlett@name).

Asteroid allows you to attach functions to structures. In member functions the object identity is available through the
this keyword. For example, we can extend our Person structure with the hello function that uses the name field of
the object,

load system io.

structure Person with
data name.
data age.
function hello with none do

io @println ("Hello, my name is "+this@name).
end

end

let scarlett = Person("Scarlett",28).
-- call the member function
scarlett @hello ().

This program will print out,

Hello, my name is Scarlett

The expression this@name accesses the name field of the object the function hello was called on. Even though our
structures are starting to look a bit more like object definitions, pattern matching continues to work in the same way
from when we discussed structures. The only thing you need to keep in mind is that you cannot pattern match on a
function member field. From a pattern matching perspective, a structure consists only of data fields. So even if we
declare a structure like this,

load system io.

structure Person with
data name.
-- the function is defined in the middle of the data fields
function hello with none do

io @println ("Hello, my name is "+this@name).
end
data age.

(continues on next page)

1.4. Asteroid User Guide 23



Asteroid, Release 2.0.1

(continued from previous page)

end

-- pattern matching ignores function definitions
let Person(name,age) = Person("Scarlett",28).
io @println (name+" is "+ tostring age+" years old").

where the function hello is defined in the middle of the data fields, pattern matching simply ignores the function
definition and pattern matches only on the data fields. The output of the program is,

Scarlett is 28 years old

Here is a slightly more involved example loosely based on the dog example from the Python documentation. The idea
of the dog example is to have a structure that describes dogs by their names and the tricks that they can perform. Rather
than using the default constructor, we define a constructor for our instances with the __init__ function that performs
some basic type checking on its arguments using type patterns and then initializes the data members of the object. Here
is the program listing for the example in Asteroid,

load system io.

structure Dog with
data name.
data tricks.
function __init__ with (name:%string, tricks:%list) do -- constructor

let this@name = name.
let this@tricks = tricks.

end
end

let fido = Dog("Fido",["play dead","fetch"]).
let buddy = Dog("Buddy",["sit stay","roll over"]).
let bella = Dog("Bella",["roll over","fetch"]).

let dogs = [fido,buddy,bella].

-- print out all the dogs that know how to fetch
for (Dog(name,tricks) if tostring tricks is ".*fetch.*") in dogs do

io @println (name+" knows how to fetch").
end

After declaring the structure, we instantiate the dogs with their respective trick repertoires and we then put them on a
list. The last couple of lines of the program consist of a for loop over the list of our dogs. The for loop is interesting
because here we use structural, conditional, and regular expression pattern matching in order to only select the dogs
that know how to do fetch from the list of dogs. The pattern is,

Dog(name,tricks) if tostring tricks is ".*fetch.*"

The structural part of the pattern is Dog(name,tricks) which simply matches any dog instance on the list. However,
that match is only successful if the conditional part of the pattern holds,

if tostring tricks is ".*fetch.*"

This condition only succeeds if the tricks list viewed as a string matches the regular expression ".*fetch.*". That
is, if the list contains the word fetch. The output is,

24 Chapter 1. Contents

https://docs.python.org/3/tutorial/classes.html


Asteroid, Release 2.0.1

Fido knows how to fetch
Bella knows how to fetch

1.4.9 Patterns as First-Class Citizens

A programming language feature that is promoted to first-class status does not change the power of a programming
language in terms of computability but it does increase its expressiveness. Think functions as first-class citizens of a
programming language. First-class functions give us lambda functions and map, both powerful programming tools.

The same is true when we promote patterns to first-class citizen status in a language. It doesn’t change what we can
and cannot compute with the language. But it does change how we can express what we want to compute. That is, it
changes the expressiveness of a programming language.

In Asteroid first-class patterns are introduced with the keyword pattern and patterns themselves are values that we
can store in variables and then reference when we want to use them. Like so,

let p = pattern (x,y). -- define a first-class pattern
let *p = (1,2). -- use the first-class pattern

The left side of the second let statement dereferences the pattern stored in variable p and uses the pattern to match
against the value (1,2).

Here we look at three examples of how first-class patterns can add to a developer’s programming toolbox.

Pattern Factoring

Patterns can become very complicated especially when conditional pattern matching is involved. First-class patterns
allow us to control the complexity of patterns by breaking patterns up into smaller subpatterns that are more easily
managed. Consider the following function that takes a pair of values. The twist is that the first component of the pair
is restricted to primitive data types of Asteroid,

function foo with (x if (x is %boolean) or (x is %integer) or (x is %string),y) do
io @println (x,y).

end

That complicated pattern for the first component of the input pair completely obliterates the overall structure of the
parameter pattern and makes the function definition difficult to read.

We can express the same function with a first-class pattern,

let tp = pattern q if (q is %boolean) or
(q is %integer) or
(q is %string).

function foo with (x:*tp,y) do
io @println (x,y).

end

It is clear now that the main input structure to the function is a pair and the conditional type restriction pattern has been
relegated to a subpattern stored in the variable tp.

1.4. Asteroid User Guide 25



Asteroid, Release 2.0.1

Pattern Reuse

In most applications of patterns in programming languages specific patterns appear in many spots in a program. If
patterns are not first-class citizens the developer will have to retype the same patterns over and over again in the various
different spots where the patterns occurs. Consider the following program snippet,

function fact
with 0 do

return 1
with (n:%integer) if n > 0 do

return n * fact (n-1).
with (n:%integer) if n < 0 do

throw Error("fact undefined for negative values").
end

function sign
with 0 do

return 1
with (n:%integer) if n > 0 do

return 1.
with (n:%integer) if n < 0 do

return -1.
end

In order to write these two functions we had to repeat the almost identical pattern four times. First-class patterns allow
us to write the same two functions in a much more elegant way,

let pos_int = pattern (x:%integer) if x > 0.
let neg_int = pattern (x:%integer) if x < 0.

function fact
with 0 do

return 1
with n:*pos_int do

return n * fact (n-1).
with *neg_int do

throw Error("fact undefined for negative values").
end

function sign
with 0 do

return 1
with *pos_int do

return 1.
with *neg_int do

return -1.
end

The relevant patterns are now stored in the variables pos_int and neg_int which are then used in the function defi-
nitions.

26 Chapter 1. Contents



Asteroid, Release 2.0.1

Patterns as Constraints

Sometimes we want to use patterns as constraints on other patterns. Consider the following example,

let x: v if (v is %integer) and (v > 0) = some_value.

Here we want to use the pattern v if (v is %integer) and (v > 0) purely as a constraint on the pattern x in the
sense that we want a match on x only to succeed if the variable some_value holds a positive integer. The problem is
that this pattern introduces a spurious binding of the variable v into the current environment which might be undesirable
due to variable name clashes. We can rewrite the above statement using the pattern scope operator %[...]% as follows,

let x: %[v if (v is %integer) and (v > 0) ]% = some_value.

By placing the pattern v if (v is %integer) and (v > 0) within the %[...]% scope operator the pattern still
functions as before but does not bind the variable v into the current environment.

The most common use of patterns as constraints is the prevention of non-linear patterns in functions. Consider the
following program,

load system io.

let pos_int = pattern %[v if (v is %integer) and (v > 0)]%.

function add with (a:*pos_int,b:*pos_int) do
return a+b.

end

io @println (add(1,2)).

Without the %[...]% scope operator the pattern v if (v is %integer) and (v > 0) the argument list pattern
for the function (a:*pos_int,b:*pos_int) would instantiate two instances of the variable v leading to a non-linear
pattern which is not supported by Asteroid. With the %[...]% scope operator in place we prevent the pattern v if
(v is %integer) and (v > 0) from instantiating the variable v thus preventing a non-linearity to occur in the
argument list pattern.

Sometimes we need to use patterns as constraints instead of straightforward patterns in order to avoid non-linearities
but we also want controlled access to the variables these constraint patterns declare. We achieve this by using the bind
keyword at the pattern-match site. Consider the following program,

-- declare a pattern that matches scalar values
let scalar = pattern %[p if (p is %integer) or (p is %real)]%.

-- declare a pattern that matches pairs of scalars
let pair = pattern %[(x:*scalar,y:*scalar)]%.

-- compute the dot product of two pairs of scalars
function dot2d

with (*pair bind [x as a1, y as a2], *pair bind [x as b1, y as b2]) do
a1*b1 + a2*b2

end

assert(dot2d((1,0),(0,1)) == 0).

In the function definition of dot2d we see that the pair pattern is used twice to make sure that the function is called
with a pair of pairs as its argument. However, to compute the dot product of those two pairs we need access to the
values each pair matched. We use the bind keyword together with an appropriate binding term list to extract the

1.4. Asteroid User Guide 27



Asteroid, Release 2.0.1

matched values. For the first pair we map x and y to a1 and a2 and for the second pair we map x and y to b1 and b2,
respectively.

As a quick aside, the as construction in the binding term list is only necessary when trying to resolve non-linearities
otherwise the binding term list can just consist of the variable names appearing in the pattern that you want to bind into
the current scope.

Notes on First-Class Patterns

It is important to remember that first-class patterns act like macros or dynamically scoped functions when they are used.
That is, anything that is referenced from within the pattern needs to be defined in the environment where the pattern is
actually used! That is especially true for patterns defined in different modules.

Consider the following code,

function foo with none do
load system math. -- math only available in the function local scope
return pattern %[(x:%integer) if math@mod(x,2) == 0]%.

end

let even_pattern = foo().
let n:*even_pattern = 2. -- Error: module 'math' not defined

This code will fail with the error,

error: 'math' is not defined

Here, we construct a first-class pattern in the local scope of the function foo and return it to the caller. Since patterns are
only evaluated at their usage points the math module in the function has no effect. Furthermore, when finally applying
the pattern in the last let statement the code will fail since the math module is not defined in that scope.

To remedy the situation we have to move the loading of the math module into the scope where the pattern is used,

function foo with none do
return pattern %[(x:%integer) if math@mod(x,2) == 0]%.

end

load system math. -- now 'math' is available in the scope of the pattern usage
let even_pattern = foo().
let n:*even_pattern = 2.

1.4.10 Basic Asteroid I/O

I/O functions are defined as member functions of the io module. The println function prints its argument in a
readable form to the terminal. Recall that the + operator also implements string concatenation. This allows us to
construct nicely formatted output strings,

load system io.

let a = 1.
let b = 2.
io @println ("a + b = " + tostring (a + b)).

The output is

28 Chapter 1. Contents



Asteroid, Release 2.0.1

a + b = 3

We can use the builtin tostring function to provide some additional formatting. The idea is that the tostring
function takes a value to be turned into a string together with an optional stringformat formatting specifier object,

tostring(value[,stringformat(width spec[,precision spec])])

Here the structures appearing in square brackets are optional. The width specifier tells the tostring function how
many characters to reserve for the string conversion of the value. If the value requires more characters than given in the
width specifier then the width specifier is ignored. If the width specifier is larger than than the number of characters
required for the value then the value will be right justified. For real values there is an optional precision specifier.

Here is a program that exercises some of the string formatting options,

load system io.
load system math.

-- if the width specifier is larger than the length of the value
-- then the value will be right justified
let b = tostring(true,stringformat(10)).
io @println b.

let i = tostring(5,stringformat(5)).
io @println i.

-- we can format a string by applying tostring to the string
let s = tostring("hello there!",stringformat(30)).
io @println s.

-- for floating point values: first value is width, second value precision.
-- if precision is missing then value is left justified and zero padded on right.
let r = tostring(math@pi,stringformat(6,3)).
io @println r.

The output of the program is,

true
5

hello there!
3.142

Notice the right justification of the various values within the given string length.

The io module also defines a function print which behaves just like println except that it does not terminate print
with a newline.

Another useful function defined in the io module is the input function that, given an optional prompt string, will
prompt the user at the terminal and return the input value as a string. Here is a small example,

load system io.

let name = io @input("What is your name? ").
io @println ("Hello " + name + "!").

The output is,

1.4. Asteroid User Guide 29



Asteroid, Release 2.0.1

What is your name? Leo
Hello Leo!

We can use the builtin type casting functions such as tointeger or toreal to convert the string returned from input
into a numeric value,

load system io.

let i if i > 0 = tointeger(io @input("Please enter a positive integer value: ")).

for k in 1 to i do
io @println k.

end

The output is,

Please enter a positive integer value: 3
1
2
3

1.4.11 The Module System

A module in Asteroid is a file with a set of valid Asteroid statements. You can load this file into other Asteroid code
with the statement:

load "example_path/example_filename".

or:

load example_modulename.

The search strategy for a module to be loaded is as follows,

1. raw module name - could be an absolute path

2. search in current directory

3. search in directory where Asteroid is installed

4. search in subdirectory where Asteroid was started

Modules defined by the Asteroid system should be loaded with the keyword system in order to avoid any clashes with
locally defined modules. If the system keyword is used then Asteroid only searches in its system folders rather than
in user directories.

Say that you wanted to load the math module so you could execute a certain trigonometric function. The following
Asteroid program loads the math module as well as the io module. Only after loading them would you be able to
complete the sine function below,

load system io.
load system math.

let x = math @sin( math@pi / 2.0 ).
io @println("The sine of pi / 2 is " + tostring x + ".").

30 Chapter 1. Contents



Asteroid, Release 2.0.1

Both the function sin and the constant value pi are defined in the math module. In addition, the io module is where
all input/output functions in Asteroid (such as println) come from. If you want the complete list of modules, make
sure to check out the reference guide.

1.4.12 More on Exceptions

This section will give further information on how to work with exceptions, or unexpected conditions that break the
regular flow of execution. Exceptions generated by Asteroid are Exception objects with the following structure,

structure Exception with
data kind.
data value.

end

The kind field will be populated by Asteroid with one of the following strings,

• PatternMatchFailed - this exception will be thrown if the user attempted an explicit pattern match which
failed, e.g. a let statement whose left side pattern does not match the term on the right side.

• NonLinearPatternError - this exception occurs when a pattern has more than one variable with the same
name, e.g. let (x,x) = (1,2).

• RedundantPatternFound - this exception is thrown if one pattern makes another superfluous, e.g. in a multi-
dispatch function definition.

• ArithmeticError - e.g. division by zero

• FileNotFound - an attempt of opening a file failed.

• SystemError - a general exception.

In addition to the kind field, the value field holds a string with some further details on the exception. Specific
exceptions can be caught by pattern matching on the kind field of the Exception object. For example,

load system io.

try
let x = 1/0.

catch Exception("ArithmeticError", s) do
io @println s.

end

The output is,

integer division or modulo by zero

Asteroid also provides a predefined Error object for user level exceptions,

load system io.

try
throw Error("something worth throwing").

catch Error(s) do
io @println s.

end

Of course the user can also use the Exception object for their own exceptions by defining a kind that does not interfere
with the predefined kind strings above,

1.4. Asteroid User Guide 31



Asteroid, Release 2.0.1

load system io.

try
throw Exception("MyException","something worth throwing").

catch Exception("MyException",s) do
io @println s.

end

The output here is,

something worth throwing

In addition to the Asteroid defined exceptions, the user is allowed to construct user level exceptions with any kind of
object including tuples and lists. Here is an example that constructs a tuple as an exception object,

load system io.

try
throw ("funny exception", 42).

catch ("funny exception", v) do
io @println v.

end

The output of this program is 42.

Now, if you don’t care what kind of exception you catch, you need to use a wildcard or a variable because exception
handlers are activated via pattern matching on the exception object itself. Here is an example using a wildcard,

load system io.

try
let (x,y) = (1,2,3).

catch _ do
io @println "something happened".

end

Here is an example using a variable,

load system io.

try
let (x,y) = (1,2,3).

catch e do
io @println ("something happened: "+ tostring e).

end

In this last example we simply convert the caught exception object into a string and print it,

something happened: Exception(PatternMatchFailed,pattern match failed: term and pattern
lists/tuples are not the same length)

32 Chapter 1. Contents



Asteroid, Release 2.0.1

1.4.13 More on Multi-Dispatch

With the qsort function above we saw functional programming style dispatch where the with clauses represent a
case analysis over a single type, namely the input type to the function. However, Asteroid has a much broader view of
multi-dispatch where the with clauses can represent a case analysis over different types. In order to demonstrate this
type of multi-dispatch, we show the example program from the multi-dispatch Wikipedia page written in Asteroid,

load system io.

let pos_num = pattern %[x if isscalar(x) and x > 0]%.

structure Asteroid with
data size.
function __init_

with v:*pos_num do
let this@size = v.

end
end

structure Spaceship with
data size.
function __init_

with v:*pos_num do
let this@size = v.

end
end

-- we use first-class pattern SpaceObject to
-- express that both asteroids and space ships are space objects.
let SpaceObject = pattern %[x if (x is %Asteroid) or (x is %Spaceship)]%.

-- multi-dispatch function
function collide_with
with (a:%Asteroid, b:%Spaceship) do
return "a/s".

with (a:%Spaceship, b:%Asteroid) do
return "s/a".

with (a:%Spaceship, b:%Spaceship) do
return "s/s".

with (a:%Asteroid, b:%Asteroid) do
return "a/a".

end

-- here we use the first-class pattern SpaceObject as a
-- constraint on the function parameters.
function collide with (x:*SpaceObject, y:*SpaceObject) do
return "Big boom!" if (x@size > 100 and y@size > 100) else collide_with(x, y).

end

io @println (collide(Asteroid(101), Spaceship(300))).
io @println (collide(Asteroid(10), Spaceship(10))).
io @println (collide(Spaceship(101), Spaceship(10))).

Each with clause in the function collide_with introduces a new pattern with its corresponding function body. Each

1.4. Asteroid User Guide 33

https://en.wikipedia.org/wiki/Multiple_dispatch


Asteroid, Release 2.0.1

pattern represents a different data type. In this case different kinds of pairs. The function bodies in this case are simple
return statements but they could be arbitrary computations. The output of the program is,

Big boom!
a/s
s/s

1.5 Asteroid Reference Guide

1.5.1 Language Syntax

Note: In the following descriptions <something>? denotes an optional something in a piece of syntax. We also use
the notation <something>* which means that something can appear zero or more times in a program. Capitalized
words are keywords where FOR represents the keyword for and END represents end.

Statements

Break

Syntax: BREAK '.'?

The break statement immediately breaks out of the closest surrounding looping structure. Execution will continue at
the statement right after the loop. Issuing a break statement outside of a looping structure will lead to a runtime error.

As an example we break out of the indefinite loop below when i is equal to 10,

let i = 0.

loop
let i = i+1.
if i==10 do

break.
end

end

assert (i==10).

Expressions at the Statement Level

Expressions at the statement level are supported. However, they do not have any effect on the computation unless they
contain side effects with one exception: In the absence of an explicit return statement, the value of the last expression
evaluated in a function body is considered the return value of the function.

An example,

function inc with i do
i+1.

end

Notice that because the expression i+1 is the last statement evaluated in the function body its value becomes the return
value of the function.

34 Chapter 1. Contents



Asteroid, Release 2.0.1

For-Loop

Syntax: FOR pattern IN exp DO stmt_list END

In a for-loop the expression must evaluate to either a list or a tuple. The pattern is then matched to each component
of the expression value sequentially starting with the first component. The loop body is executed for each successful
match.

In the following program the body of the loop is executed exactly once when the pattern matches the tuple (1,
"chicken"),

let tuple_list = [
(0,"duck"),
(1,"chicken"),
(2,"turkey")
].

for (1,bird) in tuple_list do
assert(bird is "chicken").

end

Function-Definition

Syntax: FUNCTION function_name WITH pattern DO stmt_list (WITH pattern DO stmt_list)* END

Function definitions in Asteroid can have one or more function bodies associated with single function name. A function
body is associated with a particular pattern that is matched against the actual argument of the function call. If the match
is successful then the associated function body is executed. If the match is not successful then other pattern/body pairs
are tried if present. If none of the patterns match the actual argument then this constitutes a runtime error. Patterns are
tried in the order they appear in the function definition.

The following is a definition of the sign function,

function sign
with x if x >= 0 do

return 1.
with x if x < 0 do

return -1.
end

Here the first function body returns 1 if the actual argument is greater or equal to zero. The second function body return
-1 if the actual argument is less than zero.

Global

Syntax: GLOBAL variable_name (',' variable_name)* '.'?

The global statement allows the developer to declare a variable as global within a function scope and this allows the
developer to set the value of a global variable from within functions.

Consider the following code snippet,

let x = 0.

(continues on next page)

1.5. Asteroid Reference Guide 35



Asteroid, Release 2.0.1

(continued from previous page)

function foo with none do
global x.
let x = 1.

end

assert(x==0).
foo().
assert(x==1).

The global statement within the function foo indicates that the let statement on the following line should assign a
value to the global variable x.

If-Then-Else

Syntax: IF exp DO stmt_list (ELIF exp DO stmt_list)* (ELSE DO? stmt_list)? END

If the first expression evaluates to the equivalent of a Boolean true value then the associated statements will be executed
and the execution continues after the end keyword. If the expression evaluates to the equivalent of a Boolean false
then the expressions of the optional elif clauses are evaluated if present. If one of them evaluates to the equivalent
of a Boolean value true then the associated statements are executed and execution continues after the end keyword.
Otherwise the statements of the optional else clause are executed if present and again flow of control is transferred to
the statements following the if-statement.

As an example consider the following if statement that determines what kind of integer value the user supplied,

load system io.

let x = tointeger (io @input "Please enter an integer: ").

if x < 0 do
io @println "Negative".

elif x == 0 do
io @println "Zero".

elif x == 1 do
io @println "One".

else do
io @println "Positive".

end

Let

Syntax: LET pattern = exp '.'?

The let statement is Asteroid’s version of the assignment statement with a twist though: the left side of the = sign
is not just a variable but is considered a pattern. For simple assignments there is no discernible difference between
assignments in Asteroid and assignments in other languages,

let x = val.

Here, the variable x will match the value stored in val. However, because the left side of the = sign is a pattern we can
write something like this,

36 Chapter 1. Contents



Asteroid, Release 2.0.1

load system math.
let x: %[ (k:%integer) if math @mod (k,2) == 0 ]% = val.

where x will only match the value of val if that value is an even integer value. The fact that the left side of the = is a
pattern allows us to write things like this,

let 1 = 1.

which simply states that the value 1 on the right can be matched by the pattern 1 on the left. Having the ability to
pattern match on literals is convenient for statements like these,

let (1,x) = p.

This let statement is only successful for values of p which are pairs where the first component of the pair is the value
1.

Load

Syntax: LOAD SYSTEM? (STRING | ID) (AS ID)? '.'?

The load statement allows you to load Asteroid modules either by filename or by module name. The system flag tells
the interpreter only to search in the system modules for the desired module. Probably the most often loaded module is
the system IO module,

load system io.
io @println "Hello World!".

The as modifier allows you to rename a module in the current context in order to avoid name clashes. Consider for
example that you had loaded your own IO module but also would like to load the system IO module. In order to avoid
a name clash you can use the as modifier to rename one of the modules,

load io. -- load my IO module
load system io as systemio. -- load the system IO module and rename it to systemio
io @output "Foobar".
systemio @println "Hello World!".

When loading a module with an explicit filename the basename of the filename becomes the module name. The
ASTEROIDPATH environment variable allows you to specify additional directories the load command will search for
modules. The contents of ASTEROIDPATH is a colon separated list of directories.

Loop

Syntax: LOOP DO? stmt_list END

The loop statement executes the statements in the loop body indefinitely unless a break statement is encountered.

1.5. Asteroid Reference Guide 37



Asteroid, Release 2.0.1

Match

Syntax: MATCH expression (WITH pattern DO stmt_list)* END

The match statement matches a value given by expression against a list of patterns in the with clauses. If a pattern
matches the associated statements will be executed,

match (1,2)
with (x,y) if x > y do

let x = "GT".
with (x,y) if x < y do

let x = "LT".
with _ do

throw Error("not a valid tuple").
end
assert(x == "LT").

Repeat-Until

Syntax: REPEAT DO? stmt_list UNTIL exp '.'?

Repeatedly execute the statements in the loop body until the expression evaluates to the equivalent of a Boolean true
value.

Here is an example of a program that prints out the elements of a list,

load system io.

let l = ["bmw", "volkswagen", "mercedes"].

repeat
let [element|l] = l.
io @println element.

until l is [].

Return

Syntax; RETURN exp? '.'?

Explicitly return from a function with an optional return value.

Structure

Syntax: STRUCTURE type_name WITH data_or_function_stmts END

The structure statement introduces a composite data type that defines a physically grouped list of variables under
one name. The variables within a structure can be declared as data members or as function members. Unless a member
function was declared as a constructor (an __init__ function) structures are instantiated using a default constructor.
The default constructor copies the arguments given to it into the data member fields in the order that the data members
appear in the structure definition and as they appear in the parameter list of the constructor. We often refer to instantiated
structures as objects. Member values of objects are accessed using the access operator @. Here is a simple example,

38 Chapter 1. Contents



Asteroid, Release 2.0.1

-- define a structure of type A
structure A with

data a.
data b.

end

let obj = A(1,2). -- call default constructor
assert( obj@a == 1 ). -- access first data member
assert( obj@b == 2 ). -- access second data member

We can use custom constructors to enforce that only certain types of values can be copied into an object,

-- define a structure of type Person
structure Person with

data name.
data age.
function __init__ with (name:%string,age:%integer) do -- constructor

let this@name = name.
let this@age = age.

end
function __str__ with none do
return this @name+" is "+ tostring(this@age) +" years old".

end
end

let betty = Person("Betty",21). -- call constructor
assert( betty@name == "Betty" ).
assert( betty@age == 21 ).

assert(tostring betty is "Betty is 21 years old").

Note that object identity is expressed using the this keyword. Here we also supplied an instantiation of the __str__
function that allows us to customize the stringification of the object. See the last line where we cast the object betty to
a string. Without the __str__ function Asteroid uses a default representation of the object as a string. The __str__
function does not accept any arguments and has to return a string.

Try-Catch

Syntax: TRY DO? stmt_list (CATCH pattern DO stmt_list)+ END

This statement allows the programmer to set up exception handlers for exceptions thrown in the code of the try part
of the statement. Notice that you can set up one or more handlers within the catch part of the statement. If there
are more than one handlers then they are searched in order starting with the first. Handlers are selected via pattern
matching on the exception object. The handler code of the first catch clause whose pattern matches the exception
object is executed.

Below is an example of a try-catch statement where the code in the try part generates a division-by-zero exception.
The exception object is pattern-matched in the catch clause and processed by the associated handler,

load system io.

try
let x = 1/0.

(continues on next page)

1.5. Asteroid Reference Guide 39



Asteroid, Release 2.0.1

(continued from previous page)

catch Exception("ArithmeticError", s) do
io @println s.

end

For more details on exceptions please see the User Guide.

Throw

Syntax: THROW exp '.'?

Allows the developer to throw an exception. Any object can serve as an exception object. However, Asteroid provides
some predefined exception objects. For more details on exceptions please see the User Guide.

While-Loop

Syntax: WHILE exp DO stmt_list END

While the expression evaluates to the equivalent of a Boolean true value execute the statements in the body of the
loop. The loop expression is reevaluated after each loop iteration.

Here is an example that prints out a sequence of integer values in reverse order,

load system io.

let i = 10.

while i >= 0 do
io @println i.
let i = i-1.

end

Expressions

All the usual arithmetic, relational, and logic operators,

+, -, *, /, ==, =/=, <=, <, >=, >, and, or, not

are supported in Asteroid. For extended mathematical operations such as mod (modulus) or sin (sine) see the math
module. Here we discuss expression constructions that are particular to Asteroid.

Substructure Access

Syntax: structure_exp @ index_exp

Asteroid provides the uniform substructure access operator @ for all structures which includes lists, tuples, and objects.
For example, accessing the first element of a list is accomplished by the expression,

[1,2,3]@0

Similarly, given an object constructed from structure A, member values are accessed by name via the @ operator,

40 Chapter 1. Contents



Asteroid, Release 2.0.1

structure A with
data a.
data b.

end

let obj = A(1,2).
assert( obj@a == 1 ). -- access member a

Head-Tail Operator

Syntax: element_exp | list_exp

This operator works in one of two ways. In the first way it allows you to pre-append an element to a list,

let [1,2,3] = 1 | [2,3].

It can also be nested,

let [1,2,3] = 1 | 2 | 3 | [].

In the second way it works as a pattern to deconstruct a list into its first element and the remainder of the list, the list
with its first element removed,

let h | t = [1,2,3].
assert(h == 1).
assert(t == [2,3]).

You can put optional brackets around the operator to highlight the fact that we are dealing with a list,

let [h | t] = [1,2,3].

The Is Predicate

Syntax: exp IS pattern

This operator matches the structure computed by the expression on the left side against the pattern on the right side
of the operator. If the match is successful it returns the Boolean value true and if not successful then it returns the
Boolean value false. All regular rules of pattern matching apply such as instantiating appropriate variable bindings
in the current scope.

Example,

load system io.

if (1,2) is (x,y) do
io @println "success".
assert(isdefined "x").
assert(isdefined "y").

else
io @println "not matched".
assert(not isdefined "x").
assert(not isdefined "y").

end

1.5. Asteroid Reference Guide 41



Asteroid, Release 2.0.1

The In Predicate

Syntax: exp IN list_exp

This predicate returns true if the value computed by the expression on the left in contained in the list computed by the
list expression on the right. It is an error if the expression on the right does not compute a list.

Example,

let true = 1 in [1,2,3].

List Comprehensions

Syntax: start_exp TO end_exp (STEP exp)?

This expression constructs a list starting with an element given by the start expression up to the value of the end
expression with a given step. If the step expression is not given then a step value of 1 is assumed. The comprehension
can be placed between optional square brackets.

Examples,

let [0,1,2,3,4] = 0 to 4.
let [0,-2,-4,-6] = [0 to -6 step -2].

Function Calls

Syntax: exp exp

Function calls are defined by function application, more specifically by juxtaposition of expressions. Here, the first
expression has to evaluated to a function expression and the second expression has to evaluate to an appropriate actual
function parameter. Notice that function calls are defined in terms of a single function parameter. If you would like
to pass more than one value to a function then you have to create a tuple. For example, if the function foo needs two
values to be passed to it then you need to create a tuple, e.g. foo (1,2). In that respect function calls differ drastically
from function calls in languages like C/C++ or Python.

Examples,

let val = (lambda with i do i+1) 1.
assert(val == 2).

function foo with (q,p) do q+p end
let val = foo (1,2).
assert(val == 3).

42 Chapter 1. Contents



Asteroid, Release 2.0.1

If-Else Expressions

Syntax: then_exp IF bool_exp ELSE else_exp

If the boolean expression evaluates to true then this expression returns the value of the first expression. Otherwise it
will return the value of the last expression.

Example,

let val = "yup" if b else "nope".

If b evaluates to true then this expression returns the string "yup" otherwise it returns the string "nope".

First-Class Patterns

Syntax: PATTERN exp

Syntax: '*' exp (BIND '[' ID (AS ID)? (',' ID (AS ID)?)*']')?

This construction allows the user to construct a pattern as a value using the pattern keyword. The advantage of
patterns as values is that they can be stored in variables or passed to or from functions. As an example we construct a
pattern which is a pair where the first component is the constant 1 and the second component is the variable x and we
store this pattern in the variable p for later use,

let p = pattern (1,x).

The pattern derefence operator * allows us to retrieve patterns from variables, e.g.

let *p = (1,2).

Here the pair (1,2) is matched against the pattern stored in the variable p such that x is bound to the value 2.

The optional bind term together with an appropriate list of variable names allows the user to selectively project variable
bindings from patterns that have been constructed using the %[...]% scope operator. into the current scope. The as
keyword allows you to rename those bindings. Consider the following program,

let Pair = pattern %[(x,y)]%.

let *Pair bind [x as a, y] = (1,2).
assert( a == 1).
assert(y == 2).

At the second let statement we bind the x as a and y from the scope of the pattern into our current scope.

Type Patterns

Syntax: '%'type_name

Type patterns match all the values of a particular type. Type patterns exist for all the Asteroid builtin types and are also
available for user defined types introduced via a structure command.

Example,

let true = 1 is %integer.

1.5. Asteroid Reference Guide 43



Asteroid, Release 2.0.1

Conditional Patterns (1)

Syntax: exp ':' pattern

These patterns allow you to express constraints on exp based on the pattern.

Example,

let x:%integer = val.

The variable x will be bound to the value of val if that value matches the type pattern %integer.

These patterns are a syntactic short hand for the equivalent conditional pattern,

exp if exp is pattern

That means the following two let statements are equivalent,

let x:(q,p) = (1,2).
let x if x is (q,p) = (1,2).

Conditional Patterns (2)

Syntax: pattern IF cond_exp

In conditional patterns the pattern only matches if the condition expression evaluates to true.

Example,

load system math.
let k if (math@mod(k,2) == 0) = val.

Here k only matches the value of val if that value is an even number.

Patterns with Scope

Syntax: %[ pattern ]% (BIND '[' ID (AS ID)? (',' ID (AS ID)?)*']')?

A pattern with scope is a pattern that does not create any bindings in the current scope. Any pattern can be turned into
a scoped pattern by placing it between the %[ and ]% operators.

Example,

let pos_int = pattern %[(x:%integer) if x > 0]%
let i:*pos_int = val.

The first line defines a scoped pattern for the positive integers. Notice that the pattern internally uses the variable x in
order to evaluate the conditional pattern but because it has been declared as a pure constraint pattern this value binding
is not exported to the current scope during pattern matching. On the second line we constrain the pattern i to only the
positive integer values using the scoped pattern stored in p. This pattern match will only succeed if val is a postive
integer.

44 Chapter 1. Contents



Asteroid, Release 2.0.1

Asteroid Grammar

The following is the complete grammar for the Asteroid language. Capitalized words are either keywords such as
FOR and END or tokens such as STRING and ID. Non-terminals are written in all lowercase letters. The grammar
utilizes an extended BNF notation where <syntactic unit>* means zero or more occurrences of the syntactic unit
and <syntactic unit>+ means one or more occurrences of the syntactic unit. Furthermore, <syntactic unit>?
means that the syntactic unit is optional. Simple terminals are written in quotes.

////////////////////////////////////////////////////////////////////////////////////////
// statements

prog
: stmt_list

stmt_list
: stmt*

stmt
: '.' // NOOP
| LOAD SYSTEM? (STRING | ID) (AS ID)? '.'?
| GLOBAL id_list '.'?
| STRUCTURE ID WITH struct_stmts END
| LET pattern '=' exp '.'?
| LOOP DO? stmt_list END
| FOR pattern IN exp DO stmt_list END
| WHILE exp DO stmt_list END
| REPEAT DO? stmt_list UNTIL exp '.'?
| MATCH exp (WITH pattern DO stmt_list)* END
| IF exp DO stmt_list (ELIF exp DO stmt_list)* (ELSE DO? stmt_list)? END
| TRY DO? stmt_list (CATCH pattern DO stmt_list)+ END
| THROW exp '.'?
| BREAK '.'?
| RETURN exp? '.'?
| function_def
| exp '.'?

function_def
: FUNCTION ID body_defs END

body_defs
: WITH pattern DO stmt_list (WITH pattern DO stmt_list)*

data_stmt
: DATA ID

struct_stmt
: data_stmt '.'?
| function_def '.'?
| '.'

struct_stmts
: struct_stmt*

(continues on next page)

1.5. Asteroid Reference Guide 45



Asteroid, Release 2.0.1

(continued from previous page)

id_list
: ID (',' ID)*

////////////////////////////////////////////////////////////////////////////////////////
// expressions/patterns

exp
: pattern

pattern
: PATTERN WITH? exp
| '%[' exp ']%' binding_list?
| head_tail

head_tail
: conditional ('|' exp)?

conditional
: compound (IF exp (ELSE exp)?)?

compound
: logic_exp0

(
(IS pattern) |
(IN exp) |
(TO exp (STEP exp)?) |

)?

logic_exp0
: logic_exp1 (OR logic_exp1)*

logic_exp1
: rel_exp0 (AND rel_exp0)*

rel_exp0
: rel_exp1 (('==' | '=/=' ) rel_exp1)*

rel_exp1
: arith_exp0 (('<=' | '<' | '>=' | '>') arith_exp0)*

arith_exp0
: arith_exp1 (('+' | '-') arith_exp1)*

(continues on next page)

46 Chapter 1. Contents



Asteroid, Release 2.0.1

(continued from previous page)

arith_exp1
: call_or_index (('*' | '/') call_or_index)*

call_or_index
: primary (primary | '@' primary)* (':' pattern)?

////////////////////////////////////////////////////////////////////////////////////////
// primary expressions/patterns

primary
: INTEGER
| REAL
| STRING
| TRUE
| FALSE
| NONE
| ID
| '*' call_or_index binding_list?
| NOT call_or_index
| MINUS call_or_index
| PLUS call_or_index
| '(' tuple_stuff ')'
| '[' list_stuff ']'
| function_const
| TYPEMATCH // TYPEMATCH == '%'<typename>

binding_list
: BIND binding_list_suffix

binding_list_suffix
: binding_term
| '[' binding_term (',' binding_term)* ']'

binding_term
: ID (AS ID)?

tuple_stuff
: exp (',' exp?)*
| empty

list_stuff
: exp (',' exp)*
| empty

function_const
: LAMBDA body_defs

1.5. Asteroid Reference Guide 47



Asteroid, Release 2.0.1

1.5.2 Notes on Function Argument Notation

Functions in Asteroid are multi-dispatch functions and therefore can be called with a variety of input configurations.
This is reflected in the documentation of built-in functions and functions belonging to modules: when a function can be
called with different input argument configurations then the documentation reflects this by providing different argument
configuration separated by a ‘|’ symbol. E.g.,

list @pop () | ix:%integer

indicating that the list member function pop can be called either with the empty argument () or with a single integer
value.

1.5.3 Builtin Functions

assert x
Throws an exception if x evaluates to false; otherwise it returns a none value.

eval x:%string
Evaluate x as a piece of Asteroid code and return the computed value. The following is a simple example,

let a = eval "1+1".
assert(a == 2).

escape x:%string
Evaluate x as a piece of Python code and return the computed value. For more details please see the section on
embedding Python code in this reference guide.

getid x
Returns a unique id of any Asteroid object as an integer.

gettype x
Returns the type of x as a string.

hd x:%list
Returns the first element of a list. It is an error to apply this function to an empty list.

isdefined x:%string
Returns true if a variable or type name is defined in the current environment otherwise it returns false. The
variable or type name must be given as a string.

islist x
Returns true if x is a list otherwise it will return false.

isnone x
Returns true if x is equal to the value none.

isscalar x
Returns true if x is either an integer or a real value.

len x
Returns the length of x. The function can only be applied to lists, strings, tuples, or structures.

range stop:%integer | (start:%integer, stop:%integer) | (start:%integer, stop:%integer, inc:%integer)
Compute a list of values depending on the input values:

1. If only the stop value is given then the list [0 to stop-1] is returned.

2. If the start and stop values are given then the list [start to stop-1] is returned.

3. If in addition to the start and stop values the inc values is given then the list [start to stop-1 step inc] is
returned.

48 Chapter 1. Contents



Asteroid, Release 2.0.1

tl x:%list
Returns the rest of the list without the first element. It is an error to apply this function to an empty list.

tobase (x:%integer,base:%integer)
Represents the given integer x as a numeral string in different bases.

tointeger (x:%string,base:%integer) | x
Converts a given input to an integer. If a base value is specified then the resulting integer is in the corresponding
base.

toplevel ()
Returns true if flow of control is in the “toplevel” module, that is, the module with which the the interpreter was
called; otherwise it will return false.

toreal x
Returns the input as a real number.

tostring x | (x,stringformat(width:%integer,precision:%integer,scientific:%boolean))
Converts an Asteroid object to a string. If format values are given, it applies the formatting to the string object.

1.5.4 List and String Objects

In Asteroid, both lists and strings, are treated like objects in the OO sense. Due to this, they have member
functions that can manipulate the contents of those objects.

Lists

A list is a structured data type that consists of square brackets enclosing comma-separated values. Member functions
on lists can be called on the data structure directly, e.g.:

[1,2,3] @length ()

Member Functions

list @append item
Adds the item to the end of the list.

list @clear ()
Removes all items from the list.

list @copy ()
Returns a shallow copy of the list.

list @count item
Returns the number of times item appears in the list.

list @extend item
Extend the list by adding all the elements from the item to the list where the item is either a list or a tuple.

list @filter f:%function
Returns a list constructed from those elements for which function f returns true.

list @index item | (item, loc(startix:%integer) | (item, loc(startix:%integer, endix:%integer))
Returns a zero-based index of the first element whose value is equal to item. It throws an exception if there is
no such item. The argument loc allows you to specify startix and endix and are used to limit the search to a
particular subsequence of the list. The returned index is computed relative to the beginning of the list rather than
the startix argument.

1.5. Asteroid Reference Guide 49



Asteroid, Release 2.0.1

list @insert (ix:%integer, item)
Insert the item into the list at the position i. This means that a@insert(0, x) inserts x at the front of the list,
and a@insert(a@length(), x) is equivalent to a@append(x).

list @join join_str:%string
Turns the list into a string using join_str between the elements. The string is returned as the return value from
this function.

list @length ()
Returns the number of elements within the list.

list @map f:%function
Applies the function f to each element of the list in place. The modified list is returned.

list @member item
Returns true only if item exists on the list.

list @pop () | ix:%integer
Removes the item at the given position in the list and returns it. If no index is specified removes and returns the
last item in the list.

list @reduce f:%function | (f:%function, init)
Reduce the list to a value by applying the function f to all the members of the list. The function f has to be a
function with two arguments where the first argument is the accumulator. If no initial value is given then the first
element of the list is assumed to be the first accumulator value. In order to illustrate, we have:

let value = [1,2] @reduce (lambda with (x,y) do x+y, 0).
assert(value == 3).

is equivalent to

let l = [1,2].
let value = 0.
for i in range(l@length()) do

let value = (lambda with (x,y) do x+y) (value,l@i).
end
assert(value == 3).

list @remove item
Removes the first element from the list whose value is equal to item. It throws an exception if there is no such
item.

list @reverse ()
Reverses the elements of the list in place and returns the reversed list.

list @shuffle ()
Creates a random permutation of the list in place and returns the randomized list.

list @sort () | reverse:%boolean
Sorts the items of the list in place and returns the sorted list. If the boolean reverse is set to true then the sorted
list is reversed.

50 Chapter 1. Contents



Asteroid, Release 2.0.1

Strings

A string is a sequence of characters surrounded by double quotes. In Asteroid, single characters are represented as
single character strings. Similar to lists the member functions of strings can be called directly on the data structure
itself, e.g.:

"Hello there" @length ()

Member Functions

string @explode ()
Returns the string as a list of characters.

string @flip ()
Returns a copy of the string with its characters in the reverse order.

string @index item:%string | (item:%string, loc(startix:%integer)) | (item:%string, loc(startix:%integer,
endix:%integer))

Returns an integer index of the item in the string or -1 if item was not found. The argument loc allows you to
specify startix and endix and are used to limit the search to a particular substring of the string. The returned
index is computed relative to the beginning of the full string rather than the startix.

string @length ()
Returns the number of characters within the string.

string @replace (old:%string, new:%string) | (old:%string, new:%string, count:%integer)
Return a copy of the string with all occurrences of regular expression old replaced by the string new. If the
argument count is given, only the first count occurrences are replaced.

string @split () | sep:%string | (sep:%string, count:%integer)
Return a list of the words in the string, using sep as the delimiter. If count is given then at most count splits are
done (thus, the list will have at most count+1 elements). If count is not specified or -1, then there is no limit
on the number of splits (all possible splits are made). Consecutive delimiters are not grouped together and are
deemed to delimit empty strings. For example:

let s = "1,,2" @split ",".
assert (s == ["1", "", "2"]).

The sep argument may consist of multiple characters. For example:

let s = "1<>2<>3" @split "<>".
assert (s == ["1", "2", "3"]).

Splitting an empty string with a specified separator returns [""]. If sep is not specified or is None, a different
splitting algorithm is applied: consecutive whitespace is regarded as a single separator, and the result will contain
no empty strings at the start or end if the string has leading or trailing whitespace. Consequently, splitting an
empty string or a string consisting of just whitespace with a none separator returns [].

string @tolower ()
Returns a copy of the string in all lower case letters.

string @toupper ()
Returns a copy of the string in all upper case letters.

string @trim () | what:%string
Returns a copy of the string with the leading and trailing characters removed. The what argument specifies the

1.5. Asteroid Reference Guide 51



Asteroid, Release 2.0.1

set of characters to be removed. If omitted trim defaults to removing whitespace. The what argument is not a
prefix or suffix; rather, all combinations of its characters are stripped.

1.5.5 Asteroid Modules

There are a number of system modules that can be loaded into an Asteroid program using load system <module
name>. The modules are implemented as objects where all the functions of that module are member functions of that
module object. For example, in the case of the io module we have println as one of the member functions. To call
that function:

load system io.
io @println "Hello there!". -- println is a member function of the io module

bitwise

This module defines bitwise operations on integers. It supports the following functions,

bitwise @band (x:%integer, y:%integer)
Performs the bitwise AND operation and returns the result as an integer.

bitwise @bclearbit (x:%integer, i:%integer)
Clear the ith bit in x and returns the result as an integer.

bitwise @blrotate (x:%integer, i:%integer)
Performs the bitwise left rotate operation by i bits and returns the result as an integer.

bitwise @blshift (x:%integer, y:%integer)
Performs the bitwise left shift operation where x is shifted by y bits and returns the result as an integer.

bitwise @bnot x:%integer
Performs the bitwise NOT operation and returns the result as an integer.

bitwise @bor (x:%integer, y:%integer)
Performs the bitwise OR operation and returns the result as an integer.

bitwise @brrotate (x:%integer, i:%integer)
Performs the bitwise right rotate operation by i bits and returns the result as an integer.

bitwise @brshift (x:%integer, y:%integer)
Performs the bitwise right shift operation where x is shifted by y bits and returns the result as an integer.

bitwise @bsetbit (x:%integer, i:%integer)
Sets the ith bit in x and returns the result as an integer.

bitwise @bsize x:%integer
Returns the bit size of x.

bitwise @bxor (x:%integer, y:%integer)
Performs the bitwise XOR operation and returns the result as an integer.

52 Chapter 1. Contents



Asteroid, Release 2.0.1

hash

This module implements a hash for key-value pairs. It supports the following functions,

hash @hash ()
Returns a new hash object of type __HASH__.

__HASH__ @aslist ()
Returns the hash as a list of key-value pairs.

__HASH__ @get key
Return the value associated with the given key as long as it can be found otherwise an exception will be thrown.

__HASH__ @insert (key, value) | pairs:%list
Given a pair of the format (key, value) insert it into the table. Given a list of the format:

[(key1, val1), (key2, val2), ...]

insert all the key-value pairs on the list into the hash.

io

This module implements Asteroid’s I/O system. The module defines three I/O streams,

1. __STDIN__ - the standard input stream.

2. __STDOUT__ - the standard output stream.

3. __STDERR__ - the standard error stream.

Furthermore, the module supports the following functions,

io @close file:%__FILE__
Closes the file where file is a file descriptor of type __FILE__.

io @input () | prompt:%string
Ask the user for input from __STDIN__. The input is returned as a string. If prompt is given it is printed and
then input is read from terminal.

io @open (name:%string, mode:%string)
Returns a file descriptor of type __FILE__. The mode string can be “r” when the file will only be read, “w” for
only writing (an existing file with the same name will be erased), and “a” opens the file for appending; any data
written to the file is automatically added to the end. Finally, “r+” opens the file for both reading and writing.

io @print item
Prints item to the terminal (__STDOUT__). No implicit newline is appended to the output.

io @println item
Prints item to the terminal (__STDOUT__) with an implicit newline character.

io @read () | file:%__FILE__
Read a file and return the contents as a string. If no file is given the __STDIN__ stream is read.

io @readln () | file:%__FILE__
Reads a line of input from a file and returns it as a string. If no file is given the __STDIN__ stream is read.

io @write what:%string | (file:%__FILE__, what:%string)
Write what to a file. If file is not given then it writes to the __STDOUT__ stream.

io @writeln what:%string | (file:%__FILE__, what:%string)
Write what to a file and append a newline charater. If file is not given then it writes to __STDOUT__.

1.5. Asteroid Reference Guide 53



Asteroid, Release 2.0.1

math

The math module implements mathematical constants and functions. An example:

load system io.
load system math.

let x = math @sin( math @pi / 2.0 ).
io @println("The sine of pi / 2 is " + tostring x + ".").

Constants

math @pi
The mathematical constant = 3.141592. . . , to available precision.

math @e
The mathematical constant e = 2.718281. . . , to available precision.

math @tau
The mathematical constant = 6.283185. . . , to available precision.

Power and logarithmic functions

math @exp x:%integer
Returns e raised to the power x, where e = 2.718281. . . is the base of the natural logarithm.

math @expm1 x
Returns e raised to the power x minus 1. This function maintains a higher level of precision then the standard
operation.

math @isqrt x:%real
Returns the floor of the square root of x as a integer.

math @ldexp (x,i)
Returns x * (2^i).

math @log x | (x, base:%integer)
If only argument x is the input, return the natural logarithm of x (to base e). If two arguments, (x, base:%integer),
are given as input, return the logarithm of x to the given base, calculated as log(x)/log(base).

math @log1p x
Returns the natural logarithm of 1 + x.

math @log2 x
Returns the base 2 logarithm of x.

math @log10 x
Returns the base 10 logarithm of x.

math @pow (b, p:%integer)
Returns b raised to the power p. The return type depends on the type of the base.

math @sqrt x
Returns the square root of x as a real.

54 Chapter 1. Contents



Asteroid, Release 2.0.1

Number-theoretic and representation functions

math @abs x
Returns that absolute value of x. The return type depends on the type of x.

math @ceil x:%real
Returns the ceiling of x: the smallest integer greater than or equal to x.

math @comb (n:%integer,k:%integer)
Returns the numbers of ways to choose k items from n total items without repetition and without order. This is
equal to n! / k!(n - k)!.

math @copysign (x,y)
Returns a real with the absolute value of x and the sign of y.

math @dist (x,y)
Return the Euclidean distance as a float between two points x and y, each given as a tuple or list of coordinates.

math @factorial (n:%integer)
Returns the factorial of the integer n.

math @floor x:%real
Returns the floor of x: the largest integer less than or equal to x.

math @fmod (v,d)
Implements the modulus operation as defined by the platform C library. This is equal to v - n*d for some integer
n such that the result has the same sign as v and magnitude less than abs(d).

math @fsum x:%list | x:%tuple
Calculate the sum of all the elements of a list or tuple. This function carries a higher floating point precison level
than the standard sum() function by tracking multiple intermediate partial sums.

math @gcd (a:%integer, b:%integer)
Returns the greatest common denominator that both integers share.

math @isclose (a:%real, b:%real) | (a:%real, b:%real, t:%real)
Return true if the values a and b are close to each other and false otherwise. Default tolerance is 1e-09. An
alternative tolerance can be specified with the t argument.

math @lcm (a:%integer,b:%integer)
Returns the least common multiple of the integers a and b.

math @mod (v,d)
Implements the modulus operation. Returns the remainder of the quotient v/d.

math @perm (n:%integer, k:%integer)
Returns the numbers of ways to choose k items from n total items without repetition and with order. This is equal
to n! / (n - k)!.

math @prod x:%list | x:%tuple
Calculate and return the product of all the elements of a list or tuple x.

math @remainder (x,y)
Returns the IEEE 754-style remainder of x with respect to y.

math @round x:%real
Returns x rounded to the nearest integer. If two integers are equally close, x is rounded to the nearest even integer.

math @sum x:%list | x:%tuple
Calculate and return the sum of all the elements of a list or tuple x.

math @trunc x:%real
Returns x with its fractional component set to 0.

1.5. Asteroid Reference Guide 55



Asteroid, Release 2.0.1

Trigonometric functions

math @acos x
Returns the arc cosine of x in radians. The result is between 0 and pi.

math @asin x
Returns the arc sine of x in radians. The result is between -pi/2 and pi/2.

math @atan x
Returns the arc tangent of x in radians. The result is between -pi/2 and pi/2.

math @atan2 (x,y)
Returns the arc tangent of y / x in radians. The result is between -pi and pi.

math @cos x
Returns the cosine of x radians.

math @hypot (x,y)
Returns the Euclidean norm as a real of x and y. This is equivalent to sqrt(x^2 + y^2).

math @sin x
Returns the sine of x radians.

math @tan x
Returns the tangent of x radians.

Hyperbolic functions

math @acosh x
Returns the inverse hyperbolic cosine of x.

math @asinh x
Returns the inverse hyperbolic sine of x.

math @atanh x
Returns the inverse hyperbolic tangent of x.

math @cosh x
Returns the hyperbolic cosine of x.

math @sinh x
Returns the hyperbolic sine of x.

math @tanh x
Returns the hyperbolic tangent of x.

Angular conversion

math @degrees x
Converts angle x from radians to degrees.

math @radians x
Converts angle x from degrees to radians.

56 Chapter 1. Contents



Asteroid, Release 2.0.1

Special functions

math @erf x
Returns the error function (also called the Gauss error function) at x.

math @erfc x
Returns the complement of the error function at x. The is defined as 1 - erf(x)

math @gamma x
Returns the Gamma function at x.

math @lgamma x
Returns the natural logarithm of the absolute value of the Gamma function at x.

os

This module provides a portable way of using operating system dependent functionality.

Process Parameters

os @argv
The list of command line arguments passed to an Asteroid script. argv[0] is the name of the Asteroid script (it
is operating system dependent whether this is a full pathname or not). In interactive mode argv[0] will be the
empty string.

os @env
A hash table where keys and values are strings that represent the process environment. For example,

os @env @get “HOME”

is the pathname of your home directory (on some platforms), and is equivalent to getenv(“HOME”) in C.

os @platform
This string contains a platform identifier.

Functions

os @basename path:%string
Return the base name of pathname path. This is the second element of the pair returned by passing path to the
function split. Note that the result of this function is different from the Unix basename program; where basename
for ‘/foo/bar/’ returns ‘bar’, the basename function returns an empty string (“”).

os @chdir path:%string
Change the current working directory to path.

os @dirname path:%string
Return the directory name of pathname path. This is the first element of the pair returned by passing path to the
function split.

os @exists path:%string
Return true if path refers to an existing path or an open file descriptor. Returns false for broken symbolic links.
On some platforms, this function may return False if permission is not granted to execute stat on the requested
file, even if the path physically exists.

os @exit () | v:%integer | msg:%string
Signaling an intention to exit the interpreter. When an argument value other than none is provided it is considered

1.5. Asteroid Reference Guide 57



Asteroid, Release 2.0.1

a status value. If it is an integer, zero is considered “successful termination” and any nonzero value is considered
“abnormal termination” by shells and the like. Most systems require it to be in the range 0–127, and produce
undefined results otherwise. Some systems have a convention for assigning specific meanings to specific exit
codes, but these are generally underdeveloped; Unix programs generally use 2 for command line syntax errors
and 1 for all other kind of errors. If none is given as an argument value then is it is considered to be a successful
exit equivalent to passing a zero. If a string is passed then it is printed printed to __STDERR__ and results in
an exit code of 1. In particular, sys.exit(“some error message”) is a quick way to exit a program when an error
occurs.

os @getdir ()
Return a string representing the current working directory.

os @getpathtime path:%string | (path:%string,flag:%boolean)
Returns a triple with (creation, access, modification) times. By default the return value is a triple of real numbers
giving the number of seconds since 1/1/1970. If the flag is set to true then a triple of strings is returned where
each string represents the respective local time. Throws an exception if the file does not exist or is inaccessible.

os @getsize path:%string
Return the size, in bytes, of path. Throws exception if the file does not exist or is inaccessible.

os @isfile path:%string
Return true if path is an existing regular file. This follows symbolic links.

os @isdir path:%string
Return true if path is an existing directory. This follows symbolic links.

os @join (path1:%string,path2:%string)
Join path1 and path2 components intelligently. The return value is the concatenation of path and any members
of *paths with exactly one directory separator following each non-empty part except the last, meaning that the
result will only end in a separator if the last part is empty. If the second component is an absolute path, the first
component is thrown away.

On Windows, the drive letter is not reset when an absolute path component (e.g., r’foo’) is encountered. If a
component contains a drive letter, all previous components are thrown away and the drive letter is reset. Note
that since there is a current directory for each drive, os.path.join(“c:”, “foo”) represents a path relative to the
current directory on drive C: (c:foo), not c:foo.

os @split path:%string
Split the pathname path into a pair, (head, tail) where tail is the last pathname component and head is everything
leading up to that. The tail part will never contain a slash; if path ends in a slash, tail will be empty. If there is
no slash in path, head will be empty. If path is empty, both head and tail are empty. Trailing slashes are stripped
from head unless it is the root (one or more slashes only). Also see the functions dirname and basename.

os @splitdrive path:%string
Split the pathname path into a pair (drive, tail) where drive is either a mount point or the empty string. On
systems which do not use drive specifications, drive will always be the empty string. In all cases, drive + tail will
be the same as path.

On Windows, splits a pathname into drive/UNC sharepoint and relative path.

If the path contains a drive letter, drive will contain everything up to and including the colon.

os @splitext path:%string
Split the pathname path into a pair (root, ext) such that root + ext == path, and the extension, ext, is empty or
begins with a period and contains at most one period. If the path contains no extension, ext will be the empty
string.

os @syscmd cmd:%string
Execute a command in a subshell. This is implemented by calling the Standard C function system, and has the
same limitations. If command generates any output, it will be sent to the interpreter standard output stream. The

58 Chapter 1. Contents



Asteroid, Release 2.0.1

C standard does not specify the meaning of the return value of the C function, so the return value of this function
is system-dependent.

patterns

The patterns module implements common patterns. An example:

load system patterns.

let evens = [].
for num in 1 to 10 do

if num is *patterns@even do
let evens = evens@append(num).

end
end
assert(evens is [2,4,6,8,10]).

If a pattern only applies to a certain datatype then a constraint expression of the form :%<datatype> appears right after
the pattern in the documentation. If the pattern applies to multiple datatypes then the different datatypes are separated
by or-bars, e.g. :%<datatype1>|%<datatype2>.

Common number sets

patterns @digit : %integer
Matches single digit integers.

patterns @even : %integer
Matches integers which are even numbers.

patterns @nat : %integer
Matches integers which are natural numbers.

patterns @negative : %integer | %real
Matches negative reals and integers.

patterns @neg_int : %integer
Matches negative integers.

patterns @neg_int : %integer
Matches negative integers.

patterns @odd : %integer
Matches integers which are odd numbers.

patterns @positive : %integer | %real
Matches positive reals and integers.

patterns @pos_int : %integer
Matches positive integers.

patterns @pos_real : %real
Matches postive reals.

patterns @prime : %integer
Matches prime numbers.

patterns @zero : %integer | %real
Matches the value 0, either as an integer or a real.

1.5. Asteroid Reference Guide 59



Asteroid, Release 2.0.1

Containers

patterns @bool_list : %list
Matches lists which only contain booleans.

patterns @func_list : %list
Matches lists which only contain functions.

patterns @int_list : %list
Matches lists which only contain integers.

patterns @list_list : %list
Matches lists which only contain lists.

patterns @real_list : %list
Matches lists which only contain reals.

patterns @str_list : %list
Matches lists which only contain strings.

patterns @tuple_list : %list
Matches lists which only contain tuples.

Strings

patterns @alphabetic : %string
Matches strings which only contain alphabetic characters.

patterns @alphanumeric : %string
Matches strings which only contain alphanumeric characters.

patterns @lowercase : %string
Matches strings which only contain lowercase alphabetic characters.

patterns @numeric : %string
Matches strings which only contain numeric characters.

patterns @uppercase : %string
Matches strings which only contain uppercase alphabetic characters.

pick

The pick module implements pick objects that allow a user to randomly pick items from a list of items using the
pickitems function. An example:

load system io.
load system pick.

let po = pick @pick [1 to 10].
let objects = po @pickitems 3.
io @println objects.

pick @pick l:%list
Construct a pick object of type __PICK__.

__PICK__ @pickitems () | n:%integer
Return items randomly picked from the list l. If no input is provided then pickitems will return a single, randomly

60 Chapter 1. Contents



Asteroid, Release 2.0.1

picked item from the list. If an integer value n is given then a list of n randomly picked items from the list l is
returned. The picked item list is constructed by sampling the list l with replacement.

random

The random module implements random number generation.

random @randint (lo:%integer,hi:%integer) | (lo:%real,hi:%real)
Return a random value N in the interval lo <= N <= hi. The type of the random value depends on the types of the
values specifying the interval. If the interval is specified with integers then a random integer value is returned.
If the interval is specified with real numbers then a real value is is returned, and for everything else an exception
is thrown.

random @random ()
Return a random real number in the range [0.0, 1.0).

random @seed x:%integer
Provide the seed value x for the random number generator.

set

The set module implements Asteroid sets as lists. Unlike lists, sets do not have repeated elements. Use the set member
function toset to turn any list into a list that represents a set (remove repeated items).

set @diff (a:%list,b:%list)
Return the difference set between sets a and b.

set @intersection (a:%list,b:%list)
Return the intersection of sets a and b.

set @toset l:%list
Return list l as a set by removing repeated elements.

set @union (a:%list,b:%list)
Return the union of sets a and b.

set @xunion (a:%list,b:%list)
Return the elements in a or b but not both.

sort

The sort module defines a parameterized sort function over a list. The sort function makes use of a user-defined order
predicate on the list’s elements to perform the sort. The QuickSort is the underlying sort algorithm. The following is a
simple example:

load system io.
load system sort.
let sl = sort @sort((lambda with (x,y) do true if x<y else false),

[10,5,110,50]).
io @println sl.

prints the sorted list:

[5,10,50,110]

1.5. Asteroid Reference Guide 61



Asteroid, Release 2.0.1

sort @sort (p:%function,l:%list)
Returns the sorted list l using the predicate p.

stream

The stream module implements streams that allow the developer to turn any list into a stream supporting interface
functions like peeking ahead or rewinding the stream. A simple use case:

load system io.
load system stream.

let s = stream @stream [1 to 10].
while not s @eof() do

io @print (tostring (s @get()) + " ").
end
io @println "".

which outputs:

1 2 3 4 5 6 7 8 9 10

stream @stream l:%list
Returns a stream object of type __STREAM__.

__STREAM__ @append x
Adds x to the end of the stream.

__STREAM__ @eof ()
Returns true if the stream does not contain any further elements for processing. Otherwise it returns false.

__STREAM__ @get ()
Returns the current element and moves the stream pointer one ahead. Returns none if no elements left in stream.

__STREAM__ @map f:%function
Applies function f to each element in the stream.

__STREAM__ @peek ()
Returns the current element available on the stream otherwise it returns none.

__STREAM__ @rewind ()
Resets the stream pointer to the first element of the stream.

util

The util module defines utility functions and structures that don’t really fit into any other modules.

util @achar x
Given a decimal ASCII code x, return the corresponding character symbol.

util @ascii x:%string
Given a character x, return the corresponding ASCII code of the first character of the input.

util @cls ()
Clears the terminal screen.

util @copy x
Given the object x, make a deep copy of it.

62 Chapter 1. Contents



Asteroid, Release 2.0.1

util @ctime x:%real
Given a real value representing seconds since 1/1/1970 this function converts it to a suitable string representation
of the date.

type @sleep x
Sleep for x seconds where the x is either an integer or real value.

type @time ()
Returns the local time as a real value in secs since 1/1/1970.

type @unzip x:%list
Given a list of pairs x this function will return a pair of lists where the first component of the pair is the list of
all the first components of the pairs of the input list and the second component of the return list is a list of all the
second components of the input list.

type @zip (list1:%list,list2:%list)
Returns a list where element i of the list is the tuple (list1@i,list2@i).

vector

The vector defines functions useful for vector arithmetic. Vectors are implemented as lists. Here is a simple example
program for the vector module:

load system io.
load system vector.

let a = [1,0].
let b = [0,1].

io @println (vector @dot (a,b)).

which prints the value 0.

vector @add (a:%list,b:%list)
Returns a vector that contains the element by element sum of the input vectors a and b.

vector @dot (a:%list,b:%list)
Computes the dot product of the two vectors a and b.

vector @mult (a:%list,b:%list)
Returns the element by element vector multiplication of vectors a and b.

vector @op (f:%function,a:%list,b:%list) | (f:%function,a:%list,b if type @isscalar(b)) | (f:%function,a if type
@isscalar(a),b:%list)

Allows the developer to vectorize any function f. Applying scalar values to vectors is also supported by this
function.

vector @sub (a:%list,b:%list)
Returns the element by element difference vector.

1.5. Asteroid Reference Guide 63



Asteroid, Release 2.0.1

1.5.6 Interfacing Asteroid with Python

Asteroid allows integration with Python in one of two ways. First, we can call the Asteroid interpreter from within a
Python program and second, we can embed Python code directly within an Asteroid program. We start with looking
at calling the Asteroid interpreter from Python.

Calling Asteroid from Python

Calling Asteroid from within a Python program is nothing more than calling Asteroid’s interp function with a string
representing an Asteroid program as its argument. In order to make this work you will have to make sure that the Python
interpreter can find the Asteroid modules. Here we assume that you have installed Asteroid with the pip installer. Once
you have installed Asteroid you will have to point the PYTHONPATH environment variable to the directory where pip
installed the Asteroid modules. You can easily find out where the modules are installed by issuing the show command,

ubuntu$ pip3 show asteroid-lang
Name: asteroid-lang
Version: 1.1.3
Summary: A pattern-matching oriented programming language.
Home-page: https://asteroid-lang.org
Author: University of Rhode Island
Author-email: lutzhamel@uri.edu
License: None
Location: /home/ubuntu/.local/lib/python3.8/site-packages
Requires: numpy, pandas, matplotlib
Required-by:
ubuntu$

The Location field tells us where the Asteroid modules have been installed. Under Ubuntu we can now create an
environment variable that points to that directory as follows,

ubuntu$ export PYTHONPATH=/home/ubuntu/.local/lib/python3.8/site-packages
ubuntu$

Now that Python knows how to find the Asteroid modules we can import the Asteroid interpreter into any Python
program using,

from asteroid.interp import interp

where the interp function takes a string representing of an Asteroid program as an argument. Let’s test drive this in
the Python interactive shell,

ubuntu$ python3
Python 3.8.10 (default, Nov 26 2021, 20:14:08)
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from asteroid.interp import interp
>>> interp('load system io. io @println "Hello, World!".')
Hello, World!
>>>

For more detailed information on the interp function do a help(interp) at the interactive Python prompt. Even
though we have shown this example under Linux, analogous approaches should work on both Windows and macOS.

Not only can we execute the Asteroid interpreter from Python but we can also access its state to look up the results of
a computation for example. Here is a slight variation of the program above where the Asteroid program computes the

64 Chapter 1. Contents



Asteroid, Release 2.0.1

string value containing the greeting but we are actually printing the value from Python,

# import Asteroid modules
from asteroid.interp import interp
from asteroid.state import state

# run the interpreter to compute the greeting string
interp('let s = "Hello World!".')

# retrieve the greeting string from the interpreter state
# notice the pair of values a symbol table lookup produces:
# one for the type of the value and one for the actual value
(type,val) = state.symbol_table.lookup_sym('s')
print(type)
print(val)

The program prints out,

string
Hello World!

Embedding Python into an Asteroid Program

Using Asteroid’s escape function allows us to embed arbitray Python code into an Asteroid program,

-- Printing hello once from each environment

-- print hello from Asteroid
load system io.
io @println "Hello World from Asteroid!".

-- print hello from Python
escape
"
print('Hello World from Python!')
".

Please note that the format of the Python code in the escaped string should follow the same guidelines as the Python
code embedded in strings handed to the Python exec function.

Not only does the escape function give you access to the Python environment but it also gives you access to the current
Asteroid interpreter state including its symbol table. That means we can access any variable defined in the Asteroid
environment from Python,

let s = "Hello World!".

escape
"
(type, val) = state.symbol_table.lookup_sym('s')
print(type)
print(val)
".

1.5. Asteroid Reference Guide 65

https://docs.python.org/3/library/functions.html#exec


Asteroid, Release 2.0.1

Notice that a symbol table lookup produces a pair of values where the first value represents the type of the value stored
in the symbol table and the second value is the actual value stored. In this case our program prints out,

string
Hello World!

That is the type of the value is a string and the value is the actual string Hello World!.

Since escape is a function we can also return values from the Python code using a special __retval__ variable. The
only trick is that we have to remember that values in Asteroid are pairs consisting of type information and values. Here
is a very simple program that exercises that part of the Python API,

load system io.

let i = escape
"
global __retval__ # access the return value register

__retval__ = ('integer', 101)
".

io @println i.

This program will print out the value 101 from Asteroid even though that value was created within the Python envi-
ronment. Notice that we have to access the return value register __retval__ with the global statement in the Python
code.

We can pull all of this together and write an Asteroid function that performs its computations in Python,

function inc with i do return escape
"
# access return value register
global __retval__
# lookup the value of the formal argument
(type, val) = state.symbol_table.lookup_sym('i')

# only perform the increment if the value is an integer
if type != 'integer':

raise ValueError('not an integer')
else:

__retval__ = (type, val+1)
".
end

-- call inc and make sure the result is correct
let k = inc(1)
assert(k == 2).

Of course the function is just an illustration of how to use the Python API. This type of computation is much easier to
express in Asteroid directly,

function inc
with i:%integer do

i+1
end

(continues on next page)

66 Chapter 1. Contents



Asteroid, Release 2.0.1

(continued from previous page)

let k = inc(1)
assert(k == 2).

The Foreign Type Tag

When working in the hybrid Asteroid-Python environment it is sometimes useful to be able to embed values in an
Asteroid program that have no direct representation in Asteroid. This is where the foreign type tage comes into play.
Consider the following program that uses Pandas dataframes within an Asteroid program,

------------------------------------------------------------------------
function pack
------------------------------------------------------------------------
-- this function packs four real values into a Pandas dataframe
with (a:%real,b:%real,c:%real,d:%real) do return escape
"
global __retval__
# we can ignore type info here because we checked it above
(_, aval) = state.symbol_table.lookup_sym('a')
(_, bval) = state.symbol_table.lookup_sym('b')
(_, cval) = state.symbol_table.lookup_sym('c')
(_, dval) = state.symbol_table.lookup_sym('d')

import pandas as pd
df = pd.DataFrame({'x':[aval,bval], 'y':[cval,dval]})
__retval__ = ('foreign', df)
"
end

------------------------------------------------------------------------
function dump
------------------------------------------------------------------------
-- dump the Pandas dataframe to stdout
with df do escape
"
(dftype, dfval) = state.symbol_table.lookup_sym('df')
if dftype != 'foreign':

raise ValueError('expected data frame')
print(dfval)
"
end

------------------------------------------------------------------------
function access
------------------------------------------------------------------------
-- access an element of the Pandas dataframe at row r and column c
with (df,r:%integer,c:%integer) do return escape
"
global __retval__
(dftype, dfval) = state.symbol_table.lookup_sym('df')
if dftype != 'foreign':

(continues on next page)

1.5. Asteroid Reference Guide 67



Asteroid, Release 2.0.1

(continued from previous page)

raise ValueError('expected data frame')
# we can ignore type info here because we checked it above
(_, rval) = state.symbol_table.lookup_sym('r')
(_, cval) = state.symbol_table.lookup_sym('c')
# make sure the ret value conforms to the Asteroid value structure
__retval__ = ('real', dfval.iloc[rval,cval])
"
end

------------------------------------------------------------------------
function sum
------------------------------------------------------------------------
-- sum down the columns of the dataframe and return a pair of values,
-- one component for each column
with (df) do return escape
"
global __retval__
(dftype, dfval) = state.symbol_table.lookup_sym('df')
if dftype != 'foreign':

raise ValueError('expected data frame')
# sum the value down the columns
sum = list(dfval.sum(axis=0))
# construct our tuple, note the type information
__retval__ = ('tuple', [('real',sum[0]),('real',sum[1])])
"
end

------------------------------------------------------------------------
-- exercise our machinery
let df = pack(1.0,2.0,3.0,4.0).
dump(df).
assert(access(df,1,1) == 4).
assert(sum(df) == (3.0,7.0)).

The dump function generates the following output,

x y
0 1.0 3.0
1 2.0 4.0

Pandas dataframes are not directly usable in Asteroid but by writing thin Python wrappers and taking advantage of the
escape expression the foreign type tag we can embed Pandas functionality into Asteroid. As an additional step we
could wrap these individual functions into a structure with the dataframe as a data member and the functions as
member functions of that structure. As an example of this approach see the dataframe.ast system module.

68 Chapter 1. Contents

https://github.com/asteroid-lang/asteroid/blob/master/asteroid/modules/dataframe.ast


Asteroid, Release 2.0.1

1.6 Asteroid in Action

This document was inspired by Andrew Shitov’s excellent book Using Raku: 100 Programming Challenges Solved
with the Brand-New Raku Programming Language. Here we use Asteroid to solve these programming challenges.

1.6.1 Section: Using Strings

Challenge: Hello, World!

> Print ‘Hello, World!’

The canonical Hello, World! program. The easiest way to write this in Asteroid is,

load system io.

io @println "Hello, World!".

Output:

Hello, World!

Challenge: Greet a person

> Ask a user for their name and greet them by printing ‘Hello, <Name>!’

Here is our first solution using a separate function for each of the steps,

load system io.

io @print ("Enter your name: ").
let name = io @input().
io @print ("Hello, "+name+"!").

Letting the function input do the prompting,

load system io.

let name = io @input("Enter your name: ").
io @println ("Hello, "+name+"!").

Doing everything in one step,

load system io.

io @println ("Hello, "+io @input("Enter your name: ")+"!").

1.6. Asteroid in Action 69

https://andrewshitov.com/wp-content/uploads/2020/01/Using-Raku.pdf
https://andrewshitov.com/wp-content/uploads/2020/01/Using-Raku.pdf


Asteroid, Release 2.0.1

Challenge: String length

> Print the length of a string.

In order to print the length of a string we can use the function len available in the util module,

load system io.

load "util".
io @println (len("Hello!")).

Output:

6

We can also use the string member function length in order to compute the length of the string,

load system io.

io @println ("Hello!" @length()).

Output:

6

Challenge: Unique digits

> Print unique digits from a given integer number.

In order to accomplish this we take advantage of the string explode function and the sort function on lists. Finally
we use the reduce function to map a list with repeated digits to a list with unique digits,

load system io.

function unique with (x,y) do
if not (x @member(y)) do

return x @append(y).
else do

return x.
end

end

let digits = "332211" @explode()
@sort()
@reduce(unique,[]).

io @println digits.
assert(digits == ["1","2","3"]).

Output:

[1,2,3]

Probably the most noteworthy characteric about this program is the reduce function. The reduce function applies a
binary function to a list. The first argument of the binary function acts like an accumulator, and the second argument
gets instantiated with the elements of the list to be processed. In our function unique, the variable x is the accumulator

70 Chapter 1. Contents



Asteroid, Release 2.0.1

with an initial value of []. The function tests whether the element y is in the list. If it is not, then it adds it to the list.
Otherwise, it just returns the accumulator unchanged.

1.6.2 Section: Modifying String Data

Challenge: Reverse a string

> Print a string in the reversed order from right to left.

We use the explode function to turn a string into a list of characters. Then, we reverse the list and turn it back into a
string using the join function,

load system io.

let str = "Hello, World!" @explode()
@reverse()
@join("").

io @println str.
assert(str == "!dlroW ,olleH").

Output:

!dlroW ,olleH

Challenge: Removing blanks from a string

> Remove leading, trailing, and double spaces from a given string.

load system io.
let str = " Hello , World ! " @trim()

@replace(" ","").
io @println str.
assert(str == "Hello, World!").

Output:

Hello, World!

Challenge: Camel case

> Create a camel-case identifier from a given phrase.

In this task, we will form the CamelCase variable for names from a given phrase. Names created in this style are built
of several words, each of which starts with a capital letter.

load system io.

function title with w do
let letter_list = w @tolower()

@explode().
let first_letter = letter_list @0

@toupper().
(continues on next page)

1.6. Asteroid in Action 71



Asteroid, Release 2.0.1

(continued from previous page)

if letter_list @length() > 1 do
let title_case = ([first_letter] + letter_list @[1 to letter_list@length()-1])␣

→˓@join("").
else

let title_case = first_letter.
end
return title_case.

end

let str = "once upon a time".
let camel_str = str @split()

@map(title)
@join("").

io @println camel_str.
assert(camel_str == "OnceUponATime").

Output:

OnceUponATime

Challenge: Incrementing filenames

> Generate a list of filenames like file1.txt, file2.txt, etc.

load system io.

let root = "file".
let ext = ".txt".

for i in 1 to 5 do
io @println (root + tostring i + ext).

end

Output:

file1.txt
file2.txt
file3.txt
file4.txt
file5.txt

Challenge: Random passwords

> Generate a random string that can be used as a password.

In our solution we take advantage of Asteroid’s Pick object. The Pick object maintains a list of items that we can
randomly select from using the pick member function. As input to the Pick object, we compute a bunch of lists of
characters that are useful for password construction. The function achar converts a decimal ASCII code to a single
character string.

72 Chapter 1. Contents



Asteroid, Release 2.0.1

load system io.
load system util.
load system pick.
load system random.

random @seed(42).

-- make up lists of symbols useful for password construction
let int_list = [0 to 9] @map(tostring).
let lc_list = [97 to 122] @map(util @achar). -- lower case characters
let uc_list = [65 to 90] @map(util @achar). --upper case characters
let sp_list = ["!","_","#","$","%","*"].
-- build the overall pick list of symbols
let pick_list = int_list+lc_list+uc_list+sp_list.

-- generate the password and print it.
let pwd = pick @pick pick_list @pickitems 15 @join("").
io @println pwd.

assert (pwd == "e3zvshdbS43brt#")

Output:

e3zvshdbS43brt#

Challenge: DNA-to-RNA transcription

> Convert the given DNA sequence to a compliment RNA.

We’ll not dig deep into the biology aspect of the problem. For us, it is important that the DNA is a string containing the
four letters A, C, G, and T, and the RNA is a string of A, C, G, and U. The transformation from DNA to RNA happens
according to the following table:

DNA: A C G T
RNA: U G C A

We will solve this programming problem using Asteroid’s first-class patterns. We could have solved this with just
testing equality on DNA characters. However, using first-class patterns is more general and can be applied to problems
with a more structured mapping relationship.

load system io.

let dna2rna_table =
[
("A","U"),
("C","G"),
("G","C"),
("T","A")

].

function dna2rna with x do
for (dna,rna) in dna2rna_table do

(continues on next page)

1.6. Asteroid in Action 73



Asteroid, Release 2.0.1

(continued from previous page)

if x is *dna do
return rna.

end
end
throw Error("unknown dna char "+x).

end

let dna_seq = "ACCATCAGTC".
let rna_seq = dna_seq @explode()

@map(dna2rna)
@join("").

io @println rna_seq.

assert(rna_seq == "UGGUAGUCAG").

Output:

UGGUAGUCAG

Challenge: Caesar cipher

> Encode a message using the Caesar cipher technique.

The Caesar code is a simple method of transcoding the letters of the message so that each letter is replaced with the
letter that occurs in the alphabet N positions earlier or later. For example, if N is 4, then the letter e becomes a, f is
transformed to b, etc. The alphabet is looped so that z becomes v, and letters a to d become w to z.

load system io.
load system util.

let achar = util @achar.
let ascii = util @ascii.

let encode_table = [119 to 122] @map(achar) + [97 to 118] @map(achar).

function encode with (v:%string) if len(v) == 1 do
-- only lowercase letters are encoded
if not (ascii(v) in [97 to 122]) do

return v.
else

return encode_table @(ascii(v)-ascii("a")).
end

end

function decode with (v:%string) if len(v) == 1 do
-- only lowercase letters are decoded
if not (ascii(v) in [97 to 122]) do

return v.
else

return encode_table @(ascii(v)-ascii("w")+4).
end

end
(continues on next page)

74 Chapter 1. Contents



Asteroid, Release 2.0.1

(continued from previous page)

let message = "hello, world!"
let secret = message @explode()

@map(encode)
@join("").

io @println secret.

assert (secret == "dahhk, sknhz!")

let decoded_msg = secret @explode()
@map(decode)
@join("").

io @println decoded_msg.

assert (decoded_msg == "hello, world!")

Output:

dahhk, sknhz!
hello, world!

1.6.3 Section: Text Analysis

Challenge: Plural endings

> Put a noun in the correct form — singular or plural — depending on the number next to it.

In program outputs, it is often required to print some number followed by a noun, for example:

10 files found

If there is only one file, then the phrase should be 1 file found instead.

load system io.

for n in 0 to 5 do
io @println (tostring n + " file" + ("s " if n>1 or n==0 else " ") + "found").

end

Output:

0 files found
1 file found
2 files found
3 files found
4 files found
5 files found

1.6. Asteroid in Action 75



Asteroid, Release 2.0.1

Challenge: The most frequent word

> Find the most frequent word in the given text.

In our solution we use a hash table to count the number of word occurences.

load system io.
load system util.
load system hash.

-- text generated at 'https://www.lipsum.com/'
let text = "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed
accumsan magna quis risus commodo, et pellentesque dui cursus. Sed quis risus
libero. Cras et mattis libero, eget varius nisi. Phasellus ultrices, augue non
dictum eleifend, nunc elit blandit velit, a viverra risus enim in tellus.
Maecenas quis ante eget turpis rhoncus rhoncus eget ut mauris. Suspendisse nec
erat sed nunc tempus hendrerit. Nunc dictum nunc molestie eleifend tempus.
Praesent cursus lorem diam, sed mattis velit vehicula scelerisque. Nunc iaculis
rhoncus ante. Etiam quam nisi, fermentum et euismod a, vulputate eu elit.
Suspendisse tincidunt ligula quis interdum blandit. Quisque sed aliquam tellus.
Pellentesque ac lacus pulvinar, ornare purus ac, viverra ex. Donec quis pharetra
dolor.

In ac massa tortor. Cras sagittis luctus scelerisque. Morbi a neque sed tortor
ultrices dapibus. Mauris pretium vitae massa non auctor. Cras egestas ex ante,
ac ullamcorper ante dignissim eget. Fusce bibendum justo ut enim luctus, id
volutpat diam lacinia. Mauris sit amet ante risus.

Nullam rhoncus ultricies dui. Etiam vel metus vehicula, pellentesque felis ut,
suscipit nunc. Sed nec interdum lorem. Maecenas odio erat, vestibulum nec
dapibus id, commodo vitae libero. Nulla sed urna sit amet nunc commodo finibus
sed vel elit. Aliquam euismod feugiat nisi quis placerat. Aliquam libero nisl,
ultrices non est at, sagittis hendrerit dui. Quisque id sem lorem. Nam ultricies
metus id ultrices molestie. Pellentesque elementum consequat nibh, nec convallis
lorem ullamcorper in. Etiam vitae mi tellus. Etiam accumsan massa sit amet dolor
tincidunt iaculis. Nam ullamcorper blandit sem id bibendum. Quisque elementum
ipsum ac sapien blandit vehicula."

-- get rid of punctuation, turn to lower case, and split into words.
-- Note: we could have employed richer regular expressions to clean up the text here
let wl = text @replace("\.","")

@replace(",","")
@tolower()
@split().

-- put the words into a hash table, the value is the count of the words
let ht = hash @hash().
for w in wl do

if ht @get(w) is none do
ht @insert(w,1).

else do
ht @insert(w,ht @get(w)+1).

end
end

(continues on next page)

76 Chapter 1. Contents



Asteroid, Release 2.0.1

(continued from previous page)

-- get the contents of hash table and find the most frequent word
let (keys,values) = util @unzip(ht@aslist()).
let values_sorted = values @copy()

@sort(true).
let most_frequent_word = keys @(values @index(values_sorted @0)).
io @println most_frequent_word.

assert (most_frequent_word == "sed").

Output:

sed

Challenge: The longest common substring

> Find the longest common substring in the given two strings.

Let us limit ourselves with finding only the first longest substring. If there are more common substrings of the same
length, then the rest are ignored. There are two loops (see also Task 17, The longest palindrome) over the first string
(stra). These use the index method to search for the substring in the second string (strb).

load system io.

let stra = "the quick brown fox jumps over the lazy dog".
let strb = "what does the fox say?".
let common = "".

for startix in 0 to stra @length()-1 do
for endix in startix to stra @length()-1 do

let s = stra @[startix to endix].
if strb @index(s) =/= -1 and s @length() > common @length() do

let common = s.
end

end
end

if common =/= "" do
io @println ("The longest common substring is '"+common+"'.").

else do
io @println ("There are no common substrings.").

end

assert (common == " fox ").

Output:

The longest common substring is ' fox '.

1.6. Asteroid in Action 77



Asteroid, Release 2.0.1

Challenge: Anagram test

> Tell if the two words are anagrams of each other.

An anagram is a word, phrase, or name formed by rearranging the letters of another, such as cinema, formed from
iceman.

load system io.

let str1 = "cinema".
let str2 = "iceman".

function normalize with str do
return str @explode()

@sort()
@join("").

end

if normalize(str1) == normalize(str2) do
io @println "Anagrams".

else do
io @println "Not anagrams".

end

assert (normalize(str1) == normalize(str2)).

Output:

Anagrams

Challenge: Palindrome test

> Check if the entered string is palindromic.

A palindrome is a string that can be read from both ends: left to right or right to left.

load system io.

let str = "Was it a rat I saw?".

function clean with str:%string do
return str @tolower()

@replace("[^a-z]","").
end

-- only keep lower case letters
let clean_str = clean(str).

-- check if it is palidromic
if clean_str == clean_str @flip() do

io @println "Palindromic".
else do

io @println "Not palindromic".
end

(continues on next page)

78 Chapter 1. Contents



Asteroid, Release 2.0.1

(continued from previous page)

assert (clean_str == clean_str @flip()).

Output:

Palindromic

Challenge: The longest palindrome

> Find the longest palindromic substring in the given string.

The main idea behind the solution is to scan the string with a window of varying width. In other words, starting from
a given character, test all the substrings of any length possible at that position. Now, extract the substring and do the
check similar to the solution of Task 16, Palindrome test. Here, we have to be careful to check the palindrome without
taking into account the non-letter characters, but saving the result as part of the original string.

load system io.

let str = "Hello, World!".

function clean with str:%string do
return str @tolower()

@replace("[^a-z]","").
end

function palindrome_test with str:%string do
let clean_str = clean(str).
if clean_str == clean_str @flip() do

return true.
else do

return false.
end

end

-- create the moving window over the string
let longest_palindrome = "".

for i in 0 to str @length()-2 do
for j in i+1 to str @length()-1 do

let str1 = str @[i to j].
if palindrome_test(str1) and

str1 @length() > longest_palindrome @length() do
let longest_palindrome = str1.

end
end

end

io @println longest_palindrome.

Output:

o, Wo

1.6. Asteroid in Action 79



Asteroid, Release 2.0.1

Challenge: Finding duplicate texts

> Find duplicate fragments in the same text.

We do this by finding and hashing N-grams after the appropriate preprocessing. We will use N=3.

load system io.
load system hash.

-- text from "www.lipsum.com"

let str = "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed
malesuada sapien nec neque suscipit, non rutrum arcu scelerisque. Nam feugiat
sapien porta ipsum accumsan, eget maximus diam volutpat. Pellentesque elementum
in orci quis pretium. Donec dignissim nunc lectus, id ornare urna varius ut.
Praesent semper faucibus vehicula. Aliquam luctus sapien at lorem malesuada,
eget suscipit felis facilisis. Suspendisse velit lectus, mollis sit amet tempor
eget, faucibus ut nulla. Vestibulum et elementum dolor, a vehicula ipsum. Morbi
ut fringilla nisi. Fusce congue rutrum orci nec porta. Ut laoreet justo vel
turpis sodales vehicula. Nulla porttitor nisl id odio eleifend sodales.

Suspendisse blandit tristique enim id laoreet. Etiam vel aliquet dui, quis
tempus magna. Donec blandit volutpat felis egestas tincidunt. Integer placerat
luctus mi non pharetra. Donec aliquet nisl orci, egestas elementum nunc bibendum
a. Morbi nec risus aliquet, viverra nunc in, molestie odio. Curabitur
pellentesque, ante eget dictum aliquam, felis leo bibendum libero, vel bibendum
lorem velit eget ex. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Vestibulum pretium tellus quis ante vulputate, pretium tincidunt ipsum dapibus.
Praesent congue, ipsum ut sagittis tempus, lacus nisi dapibus dui, aliquam porta
metus odio ut neque. Aliquam vitae faucibus dolor. Nulla iaculis lorem non
mauris viverra, ut malesuada nibh aliquam. Nam bibendum sit amet massa in
dignissim. Nam posuere nunc ante, at viverra diam rhoncus vel.

Aliquam mollis sagittis nulla. Maecenas faucibus eu dui eget accumsan.
Suspendisse sit amet fermentum sapien. Nunc vitae mi nibh. Mauris condimentum
vestibulum imperdiet. Quisque at vehicula dui. Integer sit amet volutpat arcu.
Maecenas efficitur leo tortor, non ullamcorper magna tempor non. Sed efficitur
quis metus ut pulvinar. Proin nunc felis, congue sit amet nibh placerat,
tincidunt mattis nunc. Duis efficitur lacus a orci porttitor, sed molestie risus
tempor.

Sed tincidunt ipsum at urna sollicitudin feugiat. Ut mollis orci quis massa
dictum facilisis. Maecenas non elementum mauris. Sed rutrum orci faucibus,
tristique nunc nec, mattis ante. Pellentesque habitant morbi tristique senectus
et netus et malesuada fames ac turpis egestas. In hac habitasse platea dictumst.
Morbi pellentesque dolor sit amet nunc tincidunt, ut rutrum ante vulputate.
Nullam pretium, mi sed condimentum luctus, ipsum nunc dictum lorem, vel
ultricies nibh mi ut sem. Nam volutpat id libero eget mollis.

Vestibulum eget velit eros. Phasellus sit amet vestibulum odio, vel malesuada
quam. Mauris dictum erat eu ligula mollis laoreet. Phasellus ut ante auctor,
hendrerit ipsum et, fermentum magna. Etiam nec eros elementum, consectetur nibh
ac, ullamcorper ligula. Aliquam sed porttitor sapien. Nulla tincidunt, turpis
vitae venenatis aliquet, quam purus elementum diam, in tincidunt orci diam sed

(continues on next page)

80 Chapter 1. Contents



Asteroid, Release 2.0.1

(continued from previous page)

nulla. Cras pellentesque non diam quis sollicitudin. Duis suscipit lectus dui,
eu varius metus pretium sit amet.

Nulla eu ex velit. Ut non justo semper, gravida erat quis, vehicula est.
Suspendisse nunc dui, iaculis id purus sit amet, rutrum commodo lacus. Aenean
consequat turpis a est vestibulum, ac accumsan nibh dapibus. Nam blandit
scelerisque lectus, eu pellentesque arcu ornare non. Fusce ac gravida diam. Ut
in fringilla eros. Sed metus augue, porta quis vehicula at, pellentesque et
mauris. Duis sodales lacus sit amet condimentum placerat. In blandit tristique
nulla eget malesuada. Sed congue finibus neque at semper. Etiam pellentesque
egestas urna, ut lobortis odio euismod et. Phasellus aliquet quam purus, quis
ullamcorper sem mollis eu.

Mauris quis ullamcorper nisi. Aenean quam nulla, sodales eu faucibus in, mattis
a nulla. Nullam pulvinar pretium justo eu mattis. Aliquam rutrum ipsum vitae leo
maximus ultrices. Donec ut pulvinar nisi. Sed pharetra, turpis dictum lobortis
egestas, quam massa venenatis enim, dapibus efficitur dolor mauris eu felis.
Donec vulputate ultrices justo sit amet condimentum. Donec id posuere nulla. In
vestibulum mi in lectus commodo dignissim. Quisque vestibulum egestas arcu sit
amet finibus. Proin commodo aliquet neque quis maximus.

Nulla facilisi. Sed gravida aliquet diam in congue. Mauris vehicula justo ac
sollicitudin laoreet. Mauris enim mi, auctor id magna eget, feugiat sollicitudin
leo. Vivamus ornare ornare commodo. Suspendisse ut dui quis enim porta pretium.
Praesent vitae lacus fermentum, posuere orci ac, imperdiet massa. Nulla
hendrerit id nisl sed maximus. Vivamus commodo lacus eu condimentum bibendum.
Suspendisse porttitor sem eget dolor aliquet congue. Pellentesque tristique
augue at quam hendrerit dignissim. Aenean a congue dui. Vestibulum ante ipsum
primis in faucibus orci luctus et ultrices posuere cubilia curae; Integer ante
lacus, commodo et enim sed, auctor egestas metus.

Aliquam a urna id risus tincidunt rutrum. Nunc facilisis, tortor ac suscipit
aliquam, ante neque tincidunt mi, nec ullamcorper lectus ligula vel urna.
Suspendisse lobortis at felis sit amet facilisis. Pellentesque velit lacus,
porttitor vitae eros rutrum, convallis blandit erat. Pellentesque nec mi
viverra, volutpat dui in, rutrum lacus. Ut non venenatis leo. Praesent
sollicitudin magna porttitor lorem elementum molestie non a turpis. Suspendisse
potenti.

Donec malesuada iaculis laoreet. Nunc ut volutpat ante, ut consequat tortor.
Phasellus posuere, ipsum quis dignissim iaculis, nisl felis ullamcorper ligula,
quis placerat sem sapien nec ante. Cras suscipit ut magna nec lacinia. Donec
ipsum nibh, imperdiet non aliquam eu, maximus id ante. Pellentesque vitae felis
felis. Aliquam et diam sed nulla volutpat vestibulum molestie non lacus.
Praesent porta et lacus auctor fermentum. In hac habitasse platea dictumst.
Aliquam erat volutpat. Etiam at ligula orci. Class aptent taciti sociosqu ad
litora torquent per conubia nostra, per inceptos himenaeos."

let word_list = str @tolower()
@replace("[^a-z0-9_]"," ")
@split().

let ht = hash @hash().

(continues on next page)

1.6. Asteroid in Action 81



Asteroid, Release 2.0.1

(continued from previous page)

-- create N-grams
for i in 0 to word_list @length()-3 do

-- Note: make this code more general
let n_gram = [word_list@i, word_list@(i+1), word_list @(i+2)] @join(" ").
-- put the N-gram into a hash table, the value is the count of the N-gram in the␣

→˓text.
if ht @get(n_gram) is none do

ht @insert(n_gram,1).
else do

ht @insert(n_gram,ht @get(n_gram)+1).
end

end

for ((n_gram,cnt) if cnt > 1) in ht @aslist() do
io @println (n_gram+": "+ tostring cnt).

end

Output:

lorem ipsum dolor: 2
ipsum dolor sit: 2
dolor sit amet: 3
sit amet consectetur: 2
amet consectetur adipiscing: 2
consectetur adipiscing elit: 2
in hac habitasse: 2
hac habitasse platea: 2
habitasse platea dictumst: 2
aliquet quam purus: 2
diam sed nulla: 2
sit amet condimentum: 2

1.6.4 Section: Using Numbers

Challenge: Pi

> Print the value of pi.

load system io.
load system math. -- definition of pi

io @println (math @pi).

Output:

3.141592653589793

Other constants are also available.

82 Chapter 1. Contents



Asteroid, Release 2.0.1

load system io.
load system math.

let tau = 2.0 * math @pi.

io @println (math @e).
io @println tau.

Output:

2.718281828459045
6.283185307179586

Challenge: Factorial!

> Print the factorial of a given number.

By definition, the factorial of a positive integer number N is a product of all the integers numbering from 1 to N,
including N. Our first solution is based on the direct implementation of the definition above using the list reduce
function.

load system io.

let n = 3.
let fact = [1 to n] @reduce(lambda with (a,b) do return a*b).
io @println fact.
assert (fact == 6).

Output:

6

Our second solution uses the recursive definition of factorial,

| 1 if x = 0,
x! = | x(x-1)! if x > 0,

| undef if x < 0,

where 𝑥 ∈ 𝐼𝑛𝑡. Here, each case specifies what value the function should return if the predicate applied to the input is
true. The last case is of some interest because it states that the function is undefined for negative integers.

load system io.

let POS_INT = pattern with (x:%integer) if x > 0.
let NEG_INT = pattern with (x:%integer) if x < 0.

function fact
with 0 do

return 1
with n:*POS_INT do

return n * fact (n-1).
with n:*NEG_INT do

throw Error("factorial is not defined for "+n).
(continues on next page)

1.6. Asteroid in Action 83



Asteroid, Release 2.0.1

(continued from previous page)

end

io @println ("The factorial of 3 is: " + tostring(fact 3)).
assert (fact(3) == 6).

Output:

The factorial of 3 is: 6

Challenge: Fibonacci numbers

> Print the Nth Fibonacci number.

Fibonacci numbers are defined by the recurring formula:

f_n = f_{n-1} + f_{n-2}

You can assign two values at a time (Challenge: Swap two values). You can use that technique for calculating the
next Fibonacci number from the previous two. To bootstrap the algorithm, the two first values are needed. In one of
the definitions of the Fibonacci row, the first two values are both 1.

Here we give an iterative solutions. It is clear that there exists a trivial recursive solution by implementing the above
formula.

load system io.

let n = 10. -- compute the 10th Fib number

let (f_1,f_2) = (1,1).
for i in 3 to n do

let (f_1,f_2) = (f_1+f_2,f_1).
end

io @println f_1.
assert (f_1 == 55)

Output:

55

Challenge: Print squares

> Print the squares of the numbers 1 through 10.

Of course this is straightforward, with a for-loop over a list. Here we show another solution using the list map
function.

load system io.

let sq = [1 to 10] @map(lambda with x do return x*x).

io @println sq.
(continues on next page)

84 Chapter 1. Contents



Asteroid, Release 2.0.1

(continued from previous page)

assert (sq == [1,4,9,16,25,36,49,64,81,100])

Output:

[1,4,9,16,25,36,49,64,81,100]

Challenge: Powers of two

> Print the first ten powers of two.

Just as in the previous challenge, we skip the naive loop solution and give a solution using the map function.

load system io.
load system math.

let p2 = [0 to 9] @map(lambda with x do return math @pow(2,x)).

io @println p2.

assert (p2 == [1,2,4,8,16,32,64,128,256,512])

Output:

[1,2,4,8,16,32,64,128,256,512]

Challenge: Odd and even numbers

> Print the first ten odd numbers. Print the first ten even numbers.

We start with printing the first ten odd numbers,

load system io.
load system math.

let odd = []
for (n if math @mod(n,2) =/= 0) in 1 to 10 do

let odd = odd + [n].
end

io @println odd.
assert(odd == [1,3,5,7,9])

Output:

[1,3,5,7,9]

Now the even numbers,

load system io.
load system math.

(continues on next page)

1.6. Asteroid in Action 85



Asteroid, Release 2.0.1

(continued from previous page)

let even = []
for (n if math @mod(n,2) == 0) in 1 to 10 do

let even = even + [n].
end

io @println even.
assert(even == [2,4,6,8,10])

Output:

[2,4,6,8,10]

Challenge: Compare numbers approximately

> Compare the two non-integer values approximately.

Comparing non-integer numbers (which are represented as floating-point numbers) is often a task that requires approx-
imate comparison. In Asteroid this can be accomplished with the isclose function availabel in the math module.

load system io.
load system math.

-- not equal under the default tolerance of 1E-09
assert (not math @isclose(2.0,2.00001)).

-- equal under the user defined tolerance of 0.0001
assert (math @isclose(2.0,2.00001,0.0001)).

Challenge: Prime numbers

> Decide if the given number is a prime number.

Prime numbers are those that can be divided only by 1, and by themselves.

load system io.
load system math.

function isprime with x do
if x >= 2 do

for y in range(2,x) do
if math @mod(x,y) == 0 do

return false.
end

end
else do

return false.
end
return true.

end

io @println (isprime 17).
(continues on next page)

86 Chapter 1. Contents



Asteroid, Release 2.0.1

(continued from previous page)

io @println (isprime 15).

assert (isprime(17)).
assert (not isprime(15)).

Output:

true
false

Challenge: List of prime numbers

> Print the list of the first ten prime numbers.

load system io.
load system math.

function isprime with x do
if x >= 2 do

for y in range(2,x) do
if math @mod(x,y) == 0 do

return false.
end

end
else do

return false.
end
return true.

end

let cnt = 0.
for (n if isprime(n)) in 1 to 1000000 do

io @println n.
let cnt = cnt+1.
if cnt == 10 do

break.
end

end

Output:

2
3
5
7
11
13
17
19
23
29

1.6. Asteroid in Action 87



Asteroid, Release 2.0.1

Challenge: Prime factors

> Find the prime factors of a given number.

Prime factors are the prime numbers that divide the given integer number exactly.

load system io.
load system math.

function isprime with x do
if x >= 2 do

for y in range(2,x) do
if math @mod(x,y) == 0 do

return false.
end

end
else do

return false.
end
return true.

end

function primes with x do
let lp = [].
for (n if isprime(n)) in 1 to x do

let lp = lp+[n].
end
return lp.

end

let n = 165.
let factors = [].
let primes_list = primes(n).
let ix = 0.

while n > 1 do
let factor = primes_list @ix.
let ix = ix+1.
if math @mod(n,factor) == 0 do

let ix = 0.
let n = n/factor.
let factors = factors+[factor].

end
end
io @println factors.

assert (factors == [3,5,11])

Output:

88 Chapter 1. Contents



Asteroid, Release 2.0.1

[3,5,11]

Challenge: Reducing a fraction

> Compose a fraction from the two given integers — numerator and denominator — and reduce it to lowest terms.

5/15 and 16/280 are examples of fractions that can be reduced. The final results of this task are 1/3 and 2/35. Gener-
ally, the algorithm of reducing a fraction requires searching for the greatest common divisor, and then dividing both
numerator and denominator by that number. For our solution we use the function gcd available in the math module.

load system io.
load system math.

-- fraction a/b
let a = 16.
let b = 280.

-- reduce fraction
let gcd_val = math @gcd(a,b).
let numerator = a/gcd_val.
let denominator = b/gcd_val.
io @println numerator.
io @println denominator.

-- show that original and reduced fraction are the same value
assert (a/b == numerator/denominator).

Output:

2
35

Challenge: Divide by zero

> Do something with the division by zero.

Asteroid is an eager language, that is, expressions are evaluated as early as possible. We can trap division-by-zero
errors using a try-catch block.

load system io.

try
io @println (42/0).

catch Exception(_,m) do
io @println m.

end
io @println "We are still alive...".

Output:

integer division or modulo by zero
We are still alive...

1.6. Asteroid in Action 89



Asteroid, Release 2.0.1

1.6.5 Section: Random Numbers

Challenge: Generating random numbers

> Generate a random number between 0 and N.

Asteroid has two random number generation functions: random() generates a random real value in the interval
$[0.0,1.0)$ and randint(a,b) that generates a random value in the interval $[a,b]$. The type of the random value
generated depends on the type of the values a and b specifying the interval.

load system io.
load system random.
load system util.

let randint = random @randint.

random @seed(42).

io @println (random @random()). -- random value in [0.0,1.0)
io @println (randint(0.0,1.0)). -- random value in [0.0,1.0]
io @println (randint(0,1)). -- always 0 or 1

-- generating a random number in the appropriate interval
let n = 10.
io @println (randint(0.0, toreal n)).
io @println (randint(0,n)).

Output:

0.6394267984578837
0.025010755222666936
1
2.4489185380347624
2

Challenge: Neumann’s random generator

> Implement Von Neumann’s random number generator (also known as Middle-square method).

This algorithm is a simple method of generating short sequences of four-digit random integers. The method has its
drawbacks, but for us, it is an interesting algorithmic task. The recipe has these steps:

1. Take a number between 0 and 9999.

2. Calculate the square of it.

3. If necessary, add leading zeros to make the number 8-digit.

4. Take the middle four digits.

5. Repeat from step 2.

To illustrate it with an example, let’s take the number 1234 as the seed. On step 2, it becomes 1522756; after step 3,
01522756. Finally, step 4 extracts the number 5227.

90 Chapter 1. Contents



Asteroid, Release 2.0.1

load system io.
load system util.

let n = 1234.
let sq = n*n.
let sq_str = tostring sq.
if sq_str @length() < 8 do

let prefix = [1 to 8-sq_str@length()] @map(lambda with _ do return "0")
@join("").

let sq_str = prefix + sq_str.
end
let rstr = sq_str @[2 to 5].
let rval = tointeger rstr.
io @println rval.

assert (rval == 5227)

Output:

5227

Challenge: Histogram of random numbers

> Test the quality of the random generator by using a histogram to visualise the distribution.

The quality of the built-in generator of random numbers fully depends on the algorithm the developers of the compiler
used. As a user, you cannot do much to change the existing generator, but you can always test if it delivers numbers
uniformly distributed across the whole interval.

In our solution, we generate 10 random integers between 0 and 9. We then count how many times each of the integers
have been generated. If it is a decent random number generator, all numbers should have been generated roughly an
equal number of times.

load system io.
load system random.

let hist = [0 to 9] @map(lambda with _ do return 0).

for _ in range(10000) do
let ix = random @randint(0,9).
let hist @ix = hist @ix +1

end

io @println hist.

Output:

[944,1032,1015,968,981,986,1014,1058,989,1013]

1.6. Asteroid in Action 91



Asteroid, Release 2.0.1

1.6.6 Section: Mathematical Problems

Challenge: Distance between two points

> Calculate the distance between the two points on a surface.

There are two points on a surface, each with their own coordinates, x and y. The task is to find the distance between
these two points. A straightforward solution would be to use the Pythagorean theorem:

load system io.
load system math.

let x = [10, 3].
let y = [9, 1].
let d = (math @sqrt(math @pow(x@0-y@0,2) + math @pow(x@1-y@1,2))).
io @println d.

assert (d == 2.23606797749979)

Output:

2.23606797749979

Another approach is using the math identity,

||a|| = sqrt(a . a)

where . represents the dot product. In our case a would be the distance vector between points x and y,

load system io.
load system math.
load system vector.

let x = [10, 3].
let y = [9, 1].
let a = vector @sub(x,y).
let d = math @sqrt(vector @dot(a,a)).
io @println d.

assert (d == 2.23606797749979)

Output:

2.23606797749979

The interesting part about the second approach is that it is completely dimension independent. Note that except for the
definition of the vectors $x$ and $y$ dimension never plays a part in the definition of the program.

92 Chapter 1. Contents



Asteroid, Release 2.0.1

Challenge: Standard deviation

> For the given data, calculate the standard deviation value (sigma).

Standard deviation is a statistical term that shows how compact data distribution is. The formula is the following:

𝜎 =

√︂
1

𝑛− 1

∑︁
𝑖

(�̄�− 𝑥𝑖)
2

where 𝑛 is the number of elements in the array 𝑥; �̄� is its average value (Challenge: Average on an array).

load system io.
load system math.

let values = [727.7, 1086.5, 1091.0, 1361.3, 1490.5, 1956.1].

let avg = values @reduce(lambda with (x,y) do return x+y) / toreal(values @length()).
let diff_sq = values @map(lambda with x do return math @pow(x-avg,2)).
let numerator = diff_sq @reduce(lambda with (x,y) do return x+y).
let denominator = values @length() -1.
let sigma = math @sqrt(numerator/toreal denominator).
io @println sigma.

assert (sigma == 420.96248961952256)

Output:

420.96248961952256

Challenge: Polar coordinates

> Convert the Cartesian coordinates to polar and backward.

Polar coordinates are a convenient way of representing points on a surface with the two values: distance from the centre
of coordinates, and the angle between the vector and the pole axis. The conversion formulae between the Cartesian and
polar systems, which is valid for positive x and y, are the following:

x = r cos(psi)
y = r sin(psi)
r = sqrt(x^2 + y^2)
psi = arctan(x/y)

These expressions can be implemented as-is in the code:

load system io.
load system math.

-- define common math functions locally so the
-- formulas are easy to read
let cos = math @cos.
let sin = math @sin.
let sqrt = math @sqrt.
let pow = math @pow.
let atan = math @atan.

(continues on next page)

1.6. Asteroid in Action 93



Asteroid, Release 2.0.1

(continued from previous page)

function polar_to_cartesian with (r,psi) do
-- return a tuple: (x,y)
return (r*cos(psi),r*sin(psi)).

end

function cartesian_to_polar with (x,y) do
-- return a tuple: (r,psi)
return (sqrt(pow(x,2)+pow(y,2)),atan(y/x)).

end

let (r,psi) = cartesian_to_polar(1,2).
let (x,y) = polar_to_cartesian(r,psi).

io @println (x,y).

-- show that the recovered coordinates are the same
-- we started with
assert (math @isclose(1,x,0.0001) and math @isclose(2,y,0.0001)).

Output:

(1.0000000000000002,2.0)

For the negative x and y, the Cartesian-to-polar conversion is a bit more complicated. Depending on the quadrant of
the point, the psi value is bigger or smaller than pi. When x is zero, it is either -pi/2 or pi/2. All these variants can
be implemented by using with clauses and conditional matching, as demonstrated below:

load system io.
load system math.
load system util.

-- define common math functions locally so the
-- formulas are easy to read
let cos = math @cos.
let sin = math @sin.
let sqrt = math @sqrt.
let pow = math @pow.
let atan = math @atan.
let pi = math @pi.

function polar_to_cartesian with (r,psi) do
-- return a tuple: (x,y)
return (r*cos(psi),r*sin(psi)).

end

function cartesian_to_polar with (x,y) do
return (sqrt(pow(x,2)+pow(y,2)),cartesian_to_psi(x,y)).

end

function cartesian_to_psi
with (x,y) if x > 0 do

(continues on next page)

94 Chapter 1. Contents



Asteroid, Release 2.0.1

(continued from previous page)

return atan(toreal y/toreal x).
with (x,y) if x < 0 and y >= 0 do

return atan(toreal y/toreal x)+pi.
with (x,y) if x < 0 and y < 0 do

return atan(toreal y/toreal x)-pi.
with (x,y) if x == 0 and y > 0 do

return pi/2.
with (x,y) if x == 0 and y < 0 do

return -pi/2.
with (x,y) if x == 0 and y == 0 do

return none.
end

let (r,psi) = cartesian_to_polar(-3,5).
let (x,y) = polar_to_cartesian(r,psi).

io @println (x,y).

-- show that the recovered coordinates are the same
-- we started with
assert (math @isclose(-3,x,0.0001) and math @isclose(5,y,0.0001)).

Output:

(-2.999999999999999,5.000000000000001)

Challenge: Monte Carlo method

> Calculate the area of a circle of radius 1 using the Monte Carlo method.

The Monte Carlo method is a statistical method of calculating data whose formula is not known. The idea is to generate
a big number of random numbers and see how many of them satisfy the condition.

To calculate the area of a circle with a radius of 1, pairs of random numbers between 1 and 1 are generated. These pairs
represent the points in the square in the center of coordinates with sides of length 2. The area of the square is thus 4.
If the distance between the random point and the center of the square is less than 1, then this point is located inside
the circle of that radius. Counting the number of points that landed inside the circle and the number of points outside
the circle gives the approximate value of the area of the circle, as soon as the area of the square is known. Here is the
program.

load system io.
load system math.
load system random.

let sqrt = math @sqrt.
let pow = math @pow.
let randint = random @randint.

random @seed(42).

let inside = 0.
let n = 10000.

(continues on next page)

1.6. Asteroid in Action 95



Asteroid, Release 2.0.1

(continued from previous page)

for _ in 1 to n do
let point = (randint(-1.0,1.0),randint(-1.0,1.0)).
if sqrt(pow(point@0,2)+pow(point@1,2)) <= 1.0 do

let inside = inside+1.
end

end
let area = 4.0 * toreal inside / toreal n.
io @println area.

assert (area == 3.1392).

Output:

3.1392

Challenge: Guess the number

> Write a program that generates a random integer number between 0 and 10, asks the user to guess it, and says if the
entered value is too small or too big.

First, a random number needs to be generated. Then the program must ask for the initial guess and enter the loop,
which compares the guess with the generated number.

load system io.
load system random.
load system util.

random @seed(42).

let n = random @randint(0,10).
let guess = tointeger(io @input("Guess my number between 0 and 10: ")).
while guess =/= n do

if guess < n do
io @println "Too small.".

elif guess > n do
io @println "Too big.".

end
let guess = tointeger(io @input("Try again: ")).

end
io @println "Yes, this is it!".

Challenge: Binary to integer

> Convert a binary number to a decimal integer.

In Asteroid this is straightforward using the built-in tointeger function, passing it a string representation of the binary
number and the base.

load system io.

let bin = "101101".
(continues on next page)

96 Chapter 1. Contents



Asteroid, Release 2.0.1

(continued from previous page)

let int = tointeger(bin,2).
io @println int.

assert (int == 45).

Output:

45

Challenge: Integer as binary, octal, and hex

> Print a given integer number in the binary, octal, and hexadecimal representations.

In Asteroid this is easily done with the tobase function.

load system io.

let val = 42.

io @println (tobase(val,2)). -- bin
io @println (tobase(val,8)). -- oct
io @println (tobase(val,16)). -- hex

-- make sure that conversions are correct in both directions
assert (tointeger(tobase(val,2),2) == val).
assert (tointeger(tobase(val,8),8) == val).
assert (tointeger(tobase(val,16),16) == val).

Output:

101010
52
2A

Challenge: Sum of digits

> Calculate the sum of digits of a given number.

Pretty straightforward using string and list manipulation.

load system io.

let number = 139487854.

let s = tostring number @explode()
@map tointeger
@reduce (lambda with (x,y) do x+y).

io @println s.

assert (s == 49).

1.6. Asteroid in Action 97



Asteroid, Release 2.0.1

Output:

49

Challenge: Bit counter

> Count the number of bits set to 1 in a binary representation of a positive integer number.

If we remove all the zeros from a binary number, then we are left with only 1 characters which we can then count.

load system io.

let bits = "1010101" @replace("0","")
@length().

io @println bits.

assert (bits == 4).

Output:

4

Challenge: Compose the largest number

> Given the list of integers, compose the largest possible number by concatenating them.

The easiest way to achieve that is to treat the numbers as strings, sort them alphabetically in descending order, concate-
nate the pieces to a single string, and get the resulting integer.

load system io.

let a = tointeger ([67, 8, 1, 5, 45] @map tostring @sort true @join "").
io @println a.

assert (a == 8675451).

Output:

8675451

Challenge: Convert to Roman numerals

> Convert an integer number to a Roman numerals string.

Roman numbers are not a direct translation of the decimal system. In this task, we assume that the number is not more
than 3999, which is the maximum a regular Roman number can reach.

Let’s use the algorithm that keeps the table of pre-calculated sequences of Roman letters. This is so that we don’t have
to check when III becomes IV, or when another I appears after V, etc.

In the program below, there are four such sequences: for thousands, hundreds, tens, and ones. The program iterates
over the digits of the number in the decimal representation and chooses one of the values from the array of lists stored
in the roman_hash table.

98 Chapter 1. Contents



Asteroid, Release 2.0.1

load system io.
load system math.
load system util.
load system hash.

let roman_hash = hash @hash().
roman_hash @insert(1000,["","M","MM","MMM"]).
roman_hash @insert(100,["","C","CC","CCC","CD","D","DC","DCC","DCCC","CM"]).
roman_hash @insert(10,["","X","XX","XXX","XL","L","LX","LXX","LXXX","XC"]).
roman_hash @insert(1,["","I","II","III","IV","V","VI","VII","VIII","IX"]).

let n = 2018.
let p10 = range(tostring n @length()) @map(lambda with x do math @pow (10,x))

@reverse().
let digits = tostring n @explode ()

@map tointeger.
let z = util @zip (digits, p10).
io @println z.
let roman = "".
for (d,p) in z do

let roman = roman + roman_hash @get(p) @d.
end
io @println roman.

assert (roman == "MMXVIII")

Output:

[(2,1000),(0,100),(1,10),(8,1)]
MMXVIII

Challenge: Spelling numbers

> Write an integer number below one million in words.

Human languages have many inconsistencies, especially in the most frequent constructs. Spelling numbers seems to
be a simple task, but due to a number of small differences, the resulting program is quite big.

The program is listed on the next page. Let’s discuss the algorithm first.

Take a number; for example, 987,654. The rules for spelling out the groups of three digits, 987 and 654, are the same.
For the first group, the word thousand must be added.

Now, examine a group of three digits. The first digit is the number of hundreds, and it has to be spelled only if it is not
zero. If it is not zero, then we spell the digit and add the word hundred.

Now, remove the leftmost digit, and we’ve got two digits left. If the remaining two digits form the number from 1 to
20, then it can be directly converted to the corresponding name. The names for the numbers from 0 to 10 are obviously
different. The names for the numbers from 11 to 19 have some commonalities, but is it still easier to directly prepare
the names for all of them.

For the larger numbers (21 to 99), there are two cases. If the number is dividable by 10 then a name for 20, 30, 40,
etc. is taken. If not, then the name is built of the name of tens and the name for units, joined with a hyphen, such as
forty-five.

The zero name appears only in the case when the given number is zero.

1.6. Asteroid in Action 99



Asteroid, Release 2.0.1

load system io.
load system math.

let mod = math @mod.

let names = ["zero","one","two","three","four","five","six","seven","eight","nine",
"ten","eleven","twelve","thirteen","fourteen","fifteen",
"sixteen","seventeen","eighteen","nineteen","twenty","thirty",
"forty","fifty","sixty","seventy","eighty","ninety"].

function spell_number
with (n:%integer) if n < 20 do

return names @n.
with (n:%integer) if n < 100 do

let r = names @(n / 10 + 18).
let r = r + ("-" + names @(mod(n,10))) if mod(n,10) =/= 0 else "".
return r.

with (n:%integer) if n < 1000 do
return spell_part(n,100,"hundred").

with (n:%integer) if n < 1000000 do
return spell_part(n,1000,"thousand").

end

function spell_part
with (n:%integer,base:%integer,name:%string) do

let r = spell_number(n/base) + " " + name.
return r + " " + spell_number(mod(n,base)) if mod(n,base) =/= 0 else r.

end

io @println (spell_number 15).
io @println (spell_number 75).
io @println (spell_number 987654).
io @println (spell_number 1001).

Output:

fifteen
seventy-five
nine hundred eighty-seven thousand six hundred fifty-four
one thousand one

1.6.7 Section: Manipulating Lists and Arrays

Challenge: Swap two values

> Swap the values of two variables.

In Asteroid, there is no need to use temporary variables to swap the values of two variables. Just use tuples on both
sides of the equation:

let (b,a) = (a,b).

Consider the complete program:

100 Chapter 1. Contents



Asteroid, Release 2.0.1

load system io.

let (a,b) = (10,20).
let (b,a) = (a,b).
io @println ("a = "+ tostring a,"b = "+ tostring b).

assert ((a,b) is (20,10)).

Output:

(a = 20,b = 10)

This program prints the swapped values:

(a = 20,b = 10)

This approach also works with elements of an array:

load system io.

let a = [3,5,7,4].
let (a@2,a@3) = (a@3,a@2).
io @println a.

assert (a is [3,5,4,7]).

Output:

[3,5,4,7]

Challenge: Reverse a list

> Print the given list in reverse order.

load system io.

let a = [10, 20, 30, 40, 50].
io @println (a @reverse()).

assert(a == [50,40,30,20,10]).

Output:

1.6. Asteroid in Action 101



Asteroid, Release 2.0.1

[50,40,30,20,10]

Challenge: Rotate a list

> Move all elements of an array N positions to the left or to the right.

Asteroid does not have a built-in rotate function. However, such a function is easily constructed through slicing lists
(see vix below).

load system io.
load system math.

function rotate with (l:%list,i:%integer) do
let n = l @length().
let vix = range n @map(lambda with x do return math @mod(x+i,n)).
return l @vix.

end

let a = [1, 3, 5, 7, 9, 11, 13, 15].
let b = rotate(a,3).
let c = rotate(a,-3).
io @println a.
io @println b.
io @println c.

assert(b == [7,9,11,13,15,1,3,5] and c == [11,13,15,1,3,5,7,9]).

Output:

[1,3,5,7,9,11,13,15]
[7,9,11,13,15,1,3,5]
[11,13,15,1,3,5,7,9]

Challenge: Randomize an array

> Shuffle the elements of an array in random order.

This is easily accomplished with the built-in shuffle.

load system io.
load system random.

random @seed(42).
let b = [1 to 20] @shuffle().
io @println b.

assert(b == [20,6,15,5,10,14,16,19,7,13,18,11,2,12,3,17,8,9,1,4]).

Output:

[20,6,15,5,10,14,16,19,7,13,18,11,2,12,3,17,8,9,1,4]

102 Chapter 1. Contents



Asteroid, Release 2.0.1

Challenge: Incrementing array elements

> Increment each element in an array.

For this we use Asteroid’s vector module, which can handle incrementing a vector with a scalar.

load system io.
load system vector.

let a = [1 to 10].
let b = vector @add(a,1).
io @println b.

assert(b == [2,3,4,5,6,7,8,9,10,11]).

Output:

[2,3,4,5,6,7,8,9,10,11]

Challenge: Adding up two arrays

> Take two arrays and create a new one whose elements are the sums of the corresponding items of the initial arrays.

Again, here we take advantage of Asteroid’s vector module. Note that the two vectors have to be of the same length
in order to add them together.

load system io.
load system vector.

let a = [10 to 20].
let b = [30 to 40].
let c = vector @add(a,b).
io @println c.

assert(c == [40,42,44,46,48,50,52,54,56,58,60]).

Output:

[40,42,44,46,48,50,52,54,56,58,60]

The vector module defines a function called op that allows you to combine two vectors using any arbitrary binary
function. Rewriting the above program using op,

load system io.
load system vector.

let a = [10 to 20].
let b = [30 to 40].
let c = vector @op((lambda with (x,y) do return x+y),a,b).
io @println c.

assert(c == [40,42,44,46,48,50,52,54,56,58,60]).

Output:

1.6. Asteroid in Action 103



Asteroid, Release 2.0.1

[40,42,44,46,48,50,52,54,56,58,60]

As we said above, any arbitrary binary function. Consider the relational operator < expressed as a lambda function,

load system io.
load system vector.
load system random.

random @seed(42).

let a = [1 to 10] @shuffle().
let b = [1 to 10] @shuffle().
let c = vector @op((lambda with (x,y) do return x<y),a,b).
io @println c.

assert(c == [false,true,false,false,false,true,false,false,true,true]).

Output:

[false,true,false,false,false,true,false,false,true,true]

Challenge: Exclusion of two arrays

> From the given two arrays, find the elements of the first array which do not appear in the second one.

Here we use Asteroid’s set module.

load system io.
load system set.

let a = [1 to 10].
let b = [5 to 15].
let c = set @diff(a,b).
io @println c.

assert(c @sort() == [1,2,3,4]).

Output:

[2,3,1,4]

1.6.8 Section: Information Retrieval

Challenge: Sum of the elements of an array

> Find the sum of the elements of an array of integers.

load system io.

let a = [4, 6, 8, 1, 0, 58, 1, 34, 7, 4, 2].
let s = a @reduce(lambda with (x,y) do return x+y).

(continues on next page)

104 Chapter 1. Contents



Asteroid, Release 2.0.1

(continued from previous page)

io @println s.

assert (s == 125).

Output:

125

If summing up elements that are greater than 10,

load system io.

let a = [4, 6, 8, 1, 0, 58, 1, 34, 7, 4, 2].
let f = (lambda with (x,y) do return x+(y if y > 10 else 0)).
let s = a @reduce(f,0).
io @println s.

assert (s == 92).

Output:

92

Challenge: Average of an array

> Find the average value of the given array of numbers.

load system io.

let a = [7, 11, 34, 50, 200].
let avg = a @reduce(lambda with (x,y) do return x+y)/a @length().
io @println avg.

assert (avg == 60).

Output:

60

Challenge: Is an element in a list?

> Tell if the given value is in the list.

load system io.

let array = [10, 14, 0, 15, 17, 20, 30, 35].
let x = 17.
io @println ((tostring x +" is in the list")

if array @member x
else (tostring x + " is not in the list")).

Output:

1.6. Asteroid in Action 105



Asteroid, Release 2.0.1

17 is in the list

We can also use a reduction function to solve this,

load system io.

let array = [10, 14, 0, 15, 17, 20, 30, 35].
let x = 17.

if array @reduce(lambda with (acc,i) do true if i==x else acc,false) do
io @println (tostring x + " is in the list").

else
io @println (tostring x + " is not in the list").

end

Output:

17 is in the list

Challenge: First odd number

> Find the first odd number in a list of integers.

The easiest way to do this is with a reduction,

load system io.
load system math.
load system util.

let mod = math @mod.

let array = [2, 4, 18, 9, 16, 7, 10].
let odd = array @reduce (lambda with (acc,i) do i if isnone acc and mod(i,2) =/= 0 else␣
→˓acc,none).
io @println odd.

Output:

9

Challenge: Take every second element

> Form a new array by picking every second element from the original array.

load system io.
load system math.

let array = [20 to 30] @filter(lambda with x do math @mod(x,2)=/=0).
io @println array.

assert (array == [21,23,25,27,29]).

Output:

106 Chapter 1. Contents



Asteroid, Release 2.0.1

[21,23,25,27,29]

We can use an index vector to accomplish the same thing,

load system io.
load system math.

let a = [20 to 30].
let array = a @[1 to a @length()-1 step 2] .
io @println array.

assert (array == [21,23,25,27,29]).

Output:

[21,23,25,27,29]

Challenge: Number of occurrences in an array

> Count how many times a particular element appears in the array.

load system io.
load system math.

let dt = ["apple",
"pear",
"grape",
"lemon",
"peach",
"apple",
"banana",
"grape",
"pineapple",
"avocado"].

let cnt = dt @count("grape").
io @println cnt.

assert (cnt == 2).

Output:

2

1.6. Asteroid in Action 107



Asteroid, Release 2.0.1

Challenge: Finding unique elements

> Print all unique elements of the given array.

Converting a list to a set will remove all duplicate elements in the list.

load system io.
load system set.

function unique with lst:%list do
return set @toset lst @sort().

end

let a = unique([2, 3, 7, 4, 5, 5, 6, 2, 10, 7]).

io @println a.

assert (a == [2,3,4,5,6,7,10])

Output:

[2,3,4,5,6,7,10]

Challenge: Minimum and maximum

> Find the minimum and the maximum numbers in the given list of integers.

load system io.

function max with lst:%list do
return lst @sort(true) @0.

end

function min with lst:%list do
return lst @sort() @0.

end

let v = [7, 6, 12, 3, 4, 10, 2, 5, 15, 6, 7, 8, 9, 3].

let a = max v.
let b = min v.

io @println a.
io @println b.

assert (a == 15 and b == 2).

Output:

15
2

108 Chapter 1. Contents



Asteroid, Release 2.0.1

Challenge: Increasing sequences

> Check if the given array contains increasing (or decreasing) numbers.

load system io.

let a = [3, 7, 19, 20, 34].
let b = a @reduce(lambda with ((_,x),y) do (true,y) if x<=y else (false,y),(true,a@0)).

io @println (b@0).

assert (b@0).

Output:

true

1.6.9 Section: Multi-Dimensional Data

Challenge: Transpose a matrix

> Take a matrix and print its transposed version.

In Asteroid a matrix can be represented by nested lists, like so,

let m = [[1,2],
[3,4]].

The transpose of this matrix is,

let m = [[1,3],
[2,4]].

In a square matrix computing the transpose is just a matter of swapping around the elements. However, here we will
solve the more general problem for non-square matrices,

let m = [[1,2],
[3,4],
[5,6]].

with its transpose,

let m = [[1,3,5],
[2,4,6]].

The procedure:

load system io.

function transpose with m do
-- figure out the dimensions
let xdim = m @0 @length().
let ydim = m @length().

(continues on next page)

1.6. Asteroid in Action 109



Asteroid, Release 2.0.1

(continued from previous page)

-- reserve space for the transpose
-- first we do the ydim of new matrix
let mt = range(xdim).
for y in mt do

let mt @y = range(ydim).
end

-- swap the elements
for x in range(xdim) do

for y in range(ydim) do
let mt @x @y = m @y @x.

end
end

return mt.
end

function print_matrix with m do
io @println "".
for r in m do

for e in r do
io @print (tostring e + " ").

end
io @println ("").

end
io @println "".

end

let m = [[1,2],
[3,4]].

let mt = transpose(m).

io @println ("The transpose of:").
print_matrix m.
io @println ("is:").
print_matrix mt.
io @println ("").

let m = [[1,2],
[3,4],
[5,6]].

let mt = transpose(m).

io @println ("The transpose of:").
print_matrix m.
io @println ("is:").
print_matrix mt.
io @println ("").

(continues on next page)

110 Chapter 1. Contents



Asteroid, Release 2.0.1

(continued from previous page)

assert(mt == [[1,3,5],[2,4,6]]).

Output:

The transpose of:

1 2
3 4

is:

1 3
2 4

The transpose of:

1 2
3 4
5 6

is:

1 3 5
2 4 6

Challenge: Sort hashes by parameter

> Sort a list of hashes using data in their values.

This task is commonly performed to sort items where the sortable parameter is one of the values in the hash. For
example, sorting a list of people by age.

load system io.
load system hash.
load system sort.
load system random.

let randint = random @randint.

random @seed(42).

-- hash of names with ages
let ht = hash @hash().
ht @insert("Billie",randint(20,50)).
ht @insert("Joe",randint(20,50)).
ht @insert("Pete",randint(20,50)).
ht @insert("Brandi",randint(20,50)).

-- export the hash as a list of pairs
let lst = ht @aslist().

(continues on next page)

1.6. Asteroid in Action 111



Asteroid, Release 2.0.1

(continued from previous page)

-- define our order predicate on a
-- list of pairs where the second
-- component holds the order info
function pairs with ((_,x),(_,y)) do

return true if x < y else false.
end

-- print out the sorted list
io @println (sort @sort(pairs,lst)).

assert (sort @sort(pairs,lst) == [("Pete",20),("Joe",23),("Billie",40),("Brandi",43)])

Output:

[(Pete,20),(Joe,23),(Billie,40),(Brandi,43)]

Challenge: Count hash values

> For a given hash, count the number of occurrences of each of its values.

For example, a hash is a collection mapping a car’s license plate to the colour of the car or a passport number to the
name of the street where the person lives. In the first example, the task is to count how many cars of each colour there
are. In the second example, we have to say how many people live on each street. But let’s simply count the colours of
fruit.

load system io.
load system hash.
load system sort.

let fruit_hash = hash @hash().
fruit_hash @insert("apple","red").
fruit_hash @insert("avocado","green").
fruit_hash @insert("banana","yellow").
fruit_hash @insert("grapefruit","orange").
fruit_hash @insert("grapes","green").
fruit_hash @insert("kiwi","green").
fruit_hash @insert("lemon","yellow").
fruit_hash @insert("orange","orange").
fruit_hash @insert("pear","green").
fruit_hash @insert("plum","purple").

let fruit_lst = fruit_hash @aslist().

let color_hash = hash @hash().
for (_,color) in fruit_lst do

if color_hash @get(color) is none do
color_hash @insert(color,1).

else
color_hash @insert(color, color_hash @get(color) +1).

end
end
let color_lst = color_hash @aslist().

(continues on next page)

112 Chapter 1. Contents



Asteroid, Release 2.0.1

(continued from previous page)

function pairs with ((_,x),(_,y)) do
return true if x < y else false.

end

io @println (sort @sort(pairs,color_lst)).

Output:

[(red,1),(purple,1),(yellow,2),(orange,2),(green,4)]

Challenge: Product table

> Generate and print the product table for the values from 1 to 10.

We will do this with an outer loop and a map function.

load system io.

function format with v do
let maxlen = 3.
let vstr = tostring v.
return [1 to maxlen-len(vstr)] @map(lambda with _ do " ") @join("") + vstr.

end

for i in 1 to 10 do
io @println ([1 to 10] @map(lambda with x do format(i*x)) @join(" ")).

end

Output:

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100

1.6. Asteroid in Action 113



Asteroid, Release 2.0.1

Challenge: Pascal triangle

> Generate the numbers of the Pascal triangle and print them.

The Pascal triangle is a sequence of rows of integers. It starts with a single 1 on the top row, and each following row
has one number more, starting and ending with 1, while all of the other items are the sums of the two elements above
it in the previous row. It is quite obvious from the illustration:

1
1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

To calculate the values of the next row, you may want to iterate over the values of the current row and make the sums
with the numbers next to it. Let us use the functional style that the language offers. Consider the fourth row, for
example: 1 3 3 1. To make the fifth row, you can shift all the values by one position to the right and add them up to the
current row:

13310
+ 01331
-------
14641

We can easily accomplish this with our vector module. Given the vector of the fourth row,

[1,3,3,1]

we create two new vectors,

[1,3,3,1,0]

and

[0,1,3,3,1]

We then add them together,

vector @add([1,3,3,1,0],[0,1,3,3,1]) = [1,4,6,4,1]

The only thing that is left to do is to iterate appropiately and format the output.

load system io.
load system vector.
load system util.

let triangle = [[1]].
let ix = 0.

for i in 1 to 6 do
let v = triangle @ix.
let v1 = [0] + v.
let v2 = v + [0].

(continues on next page)

114 Chapter 1. Contents



Asteroid, Release 2.0.1

(continued from previous page)

let new_v = vector @add(v1,v2).
let triangle = triangle + [new_v].
let ix = ix + 1.

end

for r in triangle do
io @println (r @map(lambda with v do tostring v) @join(" ")).

end

Output:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

The program prints the first seven rows of the Pascal triangle. The rows are not centred, and are aligned to the left
side. As an extra exercise, modify the program so that it prints the triangle as it is shown at the beginning of this task.
For example, you can first generate rows and keep them in a separate array and then, knowing the length of the longest
string, add some spaces in front of the rows before printing them.

1.7 Minimal Asteroid Debugger Reference Guide

The Minimal Asteroid Debugger is a source code debugger for the Asteroid programming language. It supports the
following:

• Breakpoints

• Single stepping at the source level

• Stepping through function calls

• Examining contents of variables in the current scope

The commandline interface of the debugger is modeled after debuggers such as the GNU debugger gdb.

1.7.1 Usage

In order to invoke the debugger type,

asteroid -d <FILENAME>

This will start a debugging session of the file <FILENAME>. Here is an example where <FILENAME> is list.ast,

$ asteroid -d list.ast
Minimal Asteroid Debugger -- Version 0.1
(c) University of Rhode Island
type 'help' for additional information
mad>

1.7. Minimal Asteroid Debugger Reference Guide 115



Asteroid, Release 2.0.1

1.7.2 Debugging sessions

During a debugging session the user is able to step through a program and examine its state. The following is debugging
session of a program that prints out a sequence of integer values,

load system io.

for i in 1 to 5 do
let x = i.
io @println x.

end

We start the debugger as shown above. We then set a breakpoint at the first statement in the for loop then continue our
computation until it hits the break point. We can then look at the contents of memory. Finally we clear all breakpoints
and let the computation finish. Here we go,

$ asteroid -d list.ast
Minimal Asteroid Debugger -- Version 0.1
(c) University of Rhode Island
type 'help' for additional information
mad> list
> 1 load system io. <<<< current line

2
3 for i in 1 to 5 do
4 let x = i.
5 io @println x.

mad> set 4 <<<< setting a breakpoint
mad> breakpoints
breakpoints:
list.ast:4
mad> continue <<<< continue execution
reached breakpoint (list.ast:4)

1 load system io.
2
3 for i in 1 to 5 do

> 4 let x = i.
5 io @println x.
6 end
7
8 [EOF]

mad> print i <<<< examining the value of i
i: 1
mad> continue
1
reached breakpoint (list.ast:4)

1 load system io.
2
3 for i in 1 to 5 do

> 4 let x = i.
5 io @println x.
6 end
7
8 [EOF]

mad> print i
(continues on next page)

116 Chapter 1. Contents



Asteroid, Release 2.0.1

(continued from previous page)

i: 2
mad> clear <<<< delete breakpoints
mad> continue
2
3
4
5
stopping MAD
mad> print i
i: 5
mad> print x
x: 5
mad> quit
$

1.7.3 Commands

Here is a table of the available commands in the the debugger,

breakpoints .................... show all breakpoints
clear .......................... clear all breakpoints
continue ....................... continue execution to next breakpoint
down ........................... move down one stack frame
frame .......................... display current stack frame number
help ........................... display help
list ........................... display source code
next ........................... step execution across a nested scope
print <name>|* ................. print contents of <name>, * lists all vars in scope
quit ........................... quit debugger
stack .......................... display runtime stack
set [<func>|<line#> [<file>]] .. set a breakpoint
step ........................... step to next executable statement
trace .......................... display runtime stack
up ............................. move up one stack frame
where .......................... print current program line

The or bar | means different options as arguments to the commands. Anything between square brackets is optional.
Anything appearing in angle brackets are actual values. For example, print <name> means we want to examine the
value of an actual variable, e.g.

print n

where n is a variable name.

Most commands are very much self-explanatory with the exception of perhaps next. The next command works just
like the step command except that it will skip stepping into nested scopes such as function calls or the execution of
module statements.

1.7. Minimal Asteroid Debugger Reference Guide 117


	Contents
	Installation
	Running the Asteroid Interpreter
	Welcome To Asteroid!
	Pattern Matching at the Core of Things
	Object-Oriented Programming in Asteroid
	How to Get Started in Asteroid

	Asteroid User Guide
	Introduction
	The Basics
	Data Structures
	Lists
	Tuples
	Structures and Objects

	The Let Statement
	Flow of Control
	Functions
	Pattern Matching
	Pattern Matching in Expressions: The Is Predicate
	Pattern Matching in Function Arguments
	Conditional Pattern Matching
	Pattern Matching in For Loops
	Pattern Matching in Try-Catch Statements

	Structures, Object-Oriented Programming, and Pattern Matching
	Patterns as First-Class Citizens
	Pattern Factoring
	Pattern Reuse
	Patterns as Constraints
	Notes on First-Class Patterns

	Basic Asteroid I/O
	The Module System
	More on Exceptions
	More on Multi-Dispatch

	Asteroid Reference Guide
	Language Syntax
	Statements
	Break
	Expressions at the Statement Level
	For-Loop
	Function-Definition
	Global
	If-Then-Else
	Let
	Load
	Loop
	Match
	Repeat-Until
	Return
	Structure
	Try-Catch
	Throw
	While-Loop

	Expressions
	Substructure Access
	Head-Tail Operator
	The Is Predicate
	The In Predicate
	List Comprehensions
	Function Calls
	If-Else Expressions
	First-Class Patterns
	Type Patterns
	Conditional Patterns (1)
	Conditional Patterns (2)
	Patterns with Scope

	Asteroid Grammar

	Notes on Function Argument Notation
	Builtin Functions
	List and String Objects
	Lists
	Member Functions

	Strings
	Member Functions


	Asteroid Modules
	bitwise
	hash
	io
	math
	Constants
	Power and logarithmic functions
	Number-theoretic and representation functions
	Trigonometric functions
	Hyperbolic functions
	Angular conversion
	Special functions

	os
	Process Parameters
	Functions

	patterns
	Common number sets
	Containers
	Strings

	pick
	random
	set
	sort
	stream
	util
	vector

	Interfacing Asteroid with Python
	Calling Asteroid from Python
	Embedding Python into an Asteroid Program
	The Foreign Type Tag


	Asteroid in Action
	Section: Using Strings
	Challenge: Hello, World!
	Challenge: Greet a person
	Challenge: String length
	Challenge: Unique digits

	Section: Modifying String Data
	Challenge: Reverse a string
	Challenge: Removing blanks from a string
	Challenge: Camel case
	Challenge: Incrementing filenames
	Challenge: Random passwords
	Challenge: DNA-to-RNA transcription
	Challenge: Caesar cipher

	Section: Text Analysis
	Challenge: Plural endings
	Challenge: The most frequent word
	Challenge: The longest common substring
	Challenge: Anagram test
	Challenge: Palindrome test
	Challenge: The longest palindrome
	Challenge: Finding duplicate texts

	Section: Using Numbers
	Challenge: Pi
	Challenge: Factorial!
	Challenge: Fibonacci numbers
	Challenge: Print squares
	Challenge: Powers of two
	Challenge: Odd and even numbers
	Challenge: Compare numbers approximately
	Challenge: Prime numbers
	Challenge: List of prime numbers
	Challenge: Prime factors
	Challenge: Reducing a fraction
	Challenge: Divide by zero

	Section: Random Numbers
	Challenge: Generating random numbers
	Challenge: Neumann’s random generator
	Challenge: Histogram of random numbers

	Section: Mathematical Problems
	Challenge: Distance between two points
	Challenge: Standard deviation
	Challenge: Polar coordinates
	Challenge: Monte Carlo method
	Challenge: Guess the number
	Challenge: Binary to integer
	Challenge: Integer as binary, octal, and hex
	Challenge: Sum of digits
	Challenge: Bit counter
	Challenge: Compose the largest number
	Challenge: Convert to Roman numerals
	Challenge: Spelling numbers

	Section: Manipulating Lists and Arrays
	Challenge: Swap two values
	Challenge: Reverse a list
	Challenge: Rotate a list
	Challenge: Randomize an array
	Challenge: Incrementing array elements
	Challenge: Adding up two arrays
	Challenge: Exclusion of two arrays

	Section: Information Retrieval
	Challenge: Sum of the elements of an array
	Challenge: Average of an array
	Challenge: Is an element in a list?
	Challenge: First odd number
	Challenge: Take every second element
	Challenge: Number of occurrences in an array
	Challenge: Finding unique elements
	Challenge: Minimum and maximum
	Challenge: Increasing sequences

	Section: Multi-Dimensional Data
	Challenge: Transpose a matrix
	Challenge: Sort hashes by parameter
	Challenge: Count hash values
	Challenge: Product table
	Challenge: Pascal triangle


	Minimal Asteroid Debugger Reference Guide
	Usage
	Debugging sessions
	Commands



